BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32106448)

  • 1. The Research on Multi-material 3D Vascularized Network Integrated Printing Technology.
    Yang S; Tang H; Feng C; Shi J; Yang J
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32106448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material.
    Zou Q; Grottkau BE; He Z; Shu L; Yang L; Ma M; Ye C
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110205. PubMed ID: 31924015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial Electrohydrodynamic Bioprinting of Pre-vascularized Cell-laden Constructs for Tissue Engineering.
    Mao M; Liang H; He J; Kasimu A; Zhang Y; Wang L; Li X; Li D
    Int J Bioprint; 2021; 7(3):362. PubMed ID: 34286149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-Structure Interaction Analysis of Perfusion Process of Vascularized Channels within Hydrogel Matrix Based on Three-Dimensional Printing.
    Yang S; Shi J; Yang J; Feng C; Tang H
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32847066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-bioprintable endothelial cell-laden sacrificial ink for fabrication of microvessel networks.
    Cheng KC; Theato P; Hsu SH
    Biofabrication; 2023 Sep; 15(4):. PubMed ID: 37722376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayered and heterogeneous hydrogel construct printing system with crosslinking aerosol.
    Lee G; Kim SJ; Chun H; Park JK
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications.
    Ren B; Song K; Sanikommu AR; Chai Y; Longmire MA; Chai W; Murfee WL; Huang Y
    Appl Phys Rev; 2022 Mar; 9(1):011408. PubMed ID: 35242266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Strategy for Creating Tissue-Engineered Biomimetic Blood Vessels Using 3D Bioprinting Technology.
    Xu Y; Hu Y; Liu C; Yao H; Liu B; Mi S
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.
    Lee VK; Lanzi AM; Haygan N; Yoo SS; Vincent PA; Dai G
    Cell Mol Bioeng; 2014 Sep; 7(3):460-472. PubMed ID: 25484989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel Extrusion Speed Measurements for the Optimization of Bioprinting Parameters.
    Arjoca S; Bojin F; Neagu M; Păunescu A; Neagu A; Păunescu V
    Gels; 2024 Jan; 10(2):. PubMed ID: 38391433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.
    Gao Q; He Y; Fu JZ; Liu A; Ma L
    Biomaterials; 2015 Aug; 61():203-15. PubMed ID: 26004235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting.
    Hsieh CT; Hsu SH
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Disposable Single-Nozzle Printhead for 3D Bioprinting of Continuous Multi-Material Constructs.
    Cameron T; Naseri E; MacCallum B; Ahmadi A
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs.
    Liang H; He J; Chang J; Zhang B; Li D
    Int J Bioprint; 2018; 4(1):127. PubMed ID: 33102910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ExCeL: combining extrusion printing on cellulose scaffolds with lamination to create in vitro biological models.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Biofabrication; 2019 Apr; 11(3):035002. PubMed ID: 30769331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.