These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32106448)

  • 41. Subtractive manufacturing with swelling induced stochastic folding of sacrificial materials for fabricating complex perfusable tissues in multi-well plates.
    Rajasekar S; Lin DSY; Zhang F; Sotra A; Boshart A; Clotet-Freixas S; Liu A; Hirota JA; Ogawa S; Konvalinka A; Zhang B
    Lab Chip; 2022 May; 22(10):1929-1942. PubMed ID: 35383790
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks.
    Suntornnond R; Tan EYS; An J; Chua CK
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773879
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D Bioprinting for Vascularized Tissue Fabrication.
    Richards D; Jia J; Yost M; Markwald R; Mei Y
    Ann Biomed Eng; 2017 Jan; 45(1):132-147. PubMed ID: 27230253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing.
    Shin S; Brunel LG; Cai B; Kilian D; Roth JG; Seymour AJ; Heilshorn SC
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.
    Christensen K; Davis B; Jin Y; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():65-74. PubMed ID: 29752120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Freeform 3D printing of vascularized tissues: Challenges and strategies.
    Lee H; Jang TS; Han G; Kim HW; Jung HD
    J Tissue Eng; 2021; 12():20417314211057236. PubMed ID: 34868539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs.
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Biofabrication; 2020 May; 12(3):035014. PubMed ID: 32155602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
    Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds.
    Gehlen J; Qiu W; Schädli GN; Müller R; Qin XH
    Acta Biomater; 2023 Jan; 156():49-60. PubMed ID: 35718102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-Step Bioprinting of Multi-Channel Hydrogel Filaments Using Chaotic Advection: Fabrication of Pre-Vascularized Muscle-Like Tissues.
    Bolívar-Monsalve EJ; Ceballos-González CF; Chávez-Madero C; de la Cruz-Rivas BG; Velásquez Marín S; Mora-Godínez S; Reyes-Cortés LM; Khademhosseini A; Weiss PS; Samandari M; Tamayol A; Alvarez MM; Trujillo-de Santiago G
    Adv Healthc Mater; 2022 Dec; 11(24):e2200448. PubMed ID: 35930168
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.
    Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M
    J Vis Exp; 2013 Jul; (77):e50632. PubMed ID: 23892955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges.
    Seoane-Viaño I; Januskaite P; Alvarez-Lorenzo C; Basit AW; Goyanes A
    J Control Release; 2021 Apr; 332():367-389. PubMed ID: 33652114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Continuous and highly accurate multi-material extrusion-based bioprinting with optical coherence tomography imaging.
    Wang J; Xu C; Yang S; Wang L; Xu M
    Int J Bioprint; 2023; 9(3):707. PubMed ID: 37274000
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
    Jia W; Gungor-Ozkerim PS; Zhang YS; Yue K; Zhu K; Liu W; Pi Q; Byambaa B; Dokmeci MR; Shin SR; Khademhosseini A
    Biomaterials; 2016 Nov; 106():58-68. PubMed ID: 27552316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-Time Imaging of Bonding in 3D-Printed Layers.
    Buijs JJ; Fix R; van der Kooij HM; Kodger TE
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37677016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.