These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32106494)
1. Computational Study of Lee CY; Sharma A; Semenya J; Anamoah C; Chapman KN; Barone V Antioxidants (Basel); 2020 Feb; 9(3):. PubMed ID: 32106494 [TBL] [Abstract][Full Text] [Related]
2. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Chen J; Yang J; Ma L; Li J; Shahzad N; Kim CK Sci Rep; 2020 Feb; 10(1):2611. PubMed ID: 32054964 [TBL] [Abstract][Full Text] [Related]
3. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action. Klein E; Lukes V J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant activity of erlotinib and gefitinib: theoretical and experimental insights. K P SH; Babu TD; C M P; Joshy G; Mathew D; Thayyil MS Free Radic Res; 2022 Feb; 56(2):196-208. PubMed ID: 35514158 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Mittal A; Vashistha VK; Das DK Free Radic Res; 2022; 56(5-6):378-397. PubMed ID: 36063087 [TBL] [Abstract][Full Text] [Related]
6. Two Theorems and Important Insight on How the Preferred Mechanism of Free Radical Scavenging Cannot Be Settled. Comment on Pandithavidana, D.R.; Jayawardana, S.B. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights. Bâldea I Molecules; 2022 Nov; 27(22):. PubMed ID: 36432191 [TBL] [Abstract][Full Text] [Related]
7. Why Ortho- and Para-Hydroxy Metabolites Can Scavenge Free Radicals That the Parent Atorvastatin Cannot? Important Pharmacologic Insight from Quantum Chemistry. Bâldea I Molecules; 2022 Aug; 27(15):. PubMed ID: 35956986 [TBL] [Abstract][Full Text] [Related]
8. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. Litwinienko G; Ingold KU J Org Chem; 2004 Sep; 69(18):5888-96. PubMed ID: 15373474 [TBL] [Abstract][Full Text] [Related]
9. Substituent Effects on the Radical Scavenging Activity of Isoflavonoid. Zheng YZ; Deng G; Guo R; Chen DF; Fu ZM Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669260 [TBL] [Abstract][Full Text] [Related]
10. PM6 study of free radical scavenging mechanisms of flavonoids: why does O-H bond dissociation enthalpy effectively represent free radical scavenging activity? Amić D; Stepanić V; Lučić B; Marković Z; Dimitrić Marković JM J Mol Model; 2013 Jun; 19(6):2593-603. PubMed ID: 23479282 [TBL] [Abstract][Full Text] [Related]
11. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Wang G; Xue Y; An L; Zheng Y; Dou Y; Zhang L; Liu Y Food Chem; 2015 Mar; 171():89-97. PubMed ID: 25308647 [TBL] [Abstract][Full Text] [Related]
12. Radical Scavenging Activity of Puerarin: A Theoretical Study. Zhou H; Li X; Shang Y; Chen K Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31779233 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism. Xue Y; Zheng Y; Zhang L; Wu W; Yu D; Liu Y J Mol Model; 2013 Sep; 19(9):3851-62. PubMed ID: 23801254 [TBL] [Abstract][Full Text] [Related]
14. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O-H and N-H bond cleavage. Alisi IO; Uzairu A; Abechi SE Heliyon; 2020 Mar; 6(3):e03683. PubMed ID: 32258501 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals. Marković Z; Đorović J; Petrović ZD; Petrović VP; Simijonović D J Mol Model; 2015 Nov; 21(11):293. PubMed ID: 26508294 [TBL] [Abstract][Full Text] [Related]
16. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Biela M; Kleinová A; Klein E Phytochemistry; 2022 Aug; 200():113254. PubMed ID: 35623472 [TBL] [Abstract][Full Text] [Related]
17. Effects of nitro- and amino-group on the antioxidant activity of genistein: A theoretical study. Wang L; Yang F; Zhao X; Li Y Food Chem; 2019 Mar; 275():339-345. PubMed ID: 30724205 [TBL] [Abstract][Full Text] [Related]
18. Improving the antioxidant activity of natural antioxidant honokiol by introducing the amino group. Liu X; Li Y; Yang Q; Cai H; Wang L; Zhao X J Mol Model; 2021 Nov; 27(12):350. PubMed ID: 34757484 [TBL] [Abstract][Full Text] [Related]
19. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution. Shang YJ; Qian YP; Liu XD; Dai F; Shang XL; Jia WQ; Liu Q; Fang JG; Zhou B J Org Chem; 2009 Jul; 74(14):5025-31. PubMed ID: 19472994 [TBL] [Abstract][Full Text] [Related]
20. Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives. Thbayh DK; Reizer E; Kahaly MU; Viskolcz B; Fiser B Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]