These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32106509)

  • 1. Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure.
    Junoh H; Jaafar J; Nordin NAHM; Ismail AF; Othman MHD; Rahman MA; Aziz F; Yusof N
    Membranes (Basel); 2020 Feb; 10(3):. PubMed ID: 32106509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells.
    Palanisamy G; Oh TH; Thangarasu S
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells.
    Chen J; Cao J; Zhang R; Zhou J; Wang S; Liu X; Zhang T; Tao X; Zhang Y
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A State-of-Art on the Development of Nafion-Based Membrane for Performance Improvement in Direct Methanol Fuel Cells.
    Ng WW; Thiam HS; Pang YL; Chong KC; Lai SO
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells-A Concise Review.
    Rambabu G; D Bhat S; Figueiredo FML
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31510023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.
    Houchins C; Kleen GJ; Spendelow JS; Kopasz J; Peterson D; Garland NL; Ho DL; Marcinkoski J; Martin KE; Tyler R; Papageorgopoulos DC
    Membranes (Basel); 2012 Dec; 2(4):855-78. PubMed ID: 24958432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity of Direct Methanol Fuel Cell Membranes.
    Aricò AS; Sebastian D; Schuster M; Bauer B; D'Urso C; Lufrano F; Baglio V
    Membranes (Basel); 2015 Nov; 5(4):793-809. PubMed ID: 26610582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-[[3-(Triethoxysilyl)propyl]amino]propane-1-sulfonic acid-poly(vinyl alcohol) cross-linked zwitterionic polymer electrolyte membranes for direct methanol fuel cell applications.
    Tripathi BP; Shahi VK
    ACS Appl Mater Interfaces; 2009 May; 1(5):1002-12. PubMed ID: 20355885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into Properties of Methanol Transport in Sulfonated Polysulfone Composite Membranes for Direct Methanol Fuel Cells.
    Simari C; Nicotera I; Aricò AS; Baglio V; Lufrano F
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33923207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application.
    Gahlot S; Sharma PP; Kulshrestha V; Jha PK
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5595-601. PubMed ID: 24697540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Multiple Reactants in a Membrane-Less Direct Methanol Fuel Cell (DMFC).
    Hanapi IH; Kamarudin SK; Zainoodin AM; Hasran UA; Zakaria Z
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonized Polymer Dots Assemble in Proton-Conducting Channels to Enhance the Conductivity and Selectivity Simultaneously for High-Performance Fuel Cells.
    Xia C; Li J; Qian Z; Xu F; Li Y; Zhu S; Qian HJ; Zhao C; Lu ZY; Yang B
    Small; 2023 Aug; 19(31):e2205291. PubMed ID: 36635000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.
    Feng Y; Liu H; Yang J
    Sci Adv; 2017 Jun; 3(6):e1700580. PubMed ID: 28695199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review.
    Vinodh R; Atchudan R; Kim HJ; Yi M
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Roughening of Electrolyte Membrane for Pt- and Ru-Sputtered Passive Direct Methanol Fuel Cells.
    Jeong W; Cho GY; Cha SW; Park T
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.
    Li Q; Wang T; Havas D; Zhang H; Xu P; Han J; Cho J; Wu G
    Adv Sci (Weinh); 2016 Nov; 3(11):1600140. PubMed ID: 27980990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies-A Review.
    Gagliardi GG; Ibrahim A; Borello D; El-Kharouf A
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32276482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Inversion-Induced Porous Polybenzimidazole Fuel Cell Membranes: An Efficient Architecture for High-Temperature Water-Free Proton Transport.
    Lee S; Nam KH; Seo K; Kim G; Han H
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32707660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in the Development of Aromatic Polymer-Based Proton Exchange Membranes for Fuel Cell Applications.
    R S RR; W R; M K; W Y W; J P
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32384660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications.
    Hwang S; Lee H; Jeong YG; Choi C; Hwang I; Song S; Nam SY; Lee JH; Kim K
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.