These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 32106808)
1. Effect of Ultrasound Intensity and Mode on Piroxicam Transport Across Three-Dimensional Skin Equivalent Epidermâ„¢. Alarjah MA Recent Pat Drug Deliv Formul; 2020; 14(1):75-83. PubMed ID: 32106808 [TBL] [Abstract][Full Text] [Related]
2. Enhancing effects of fatty acids on piroxicam permeation through rat skins. Shin SC; Shin EY; Cho CW Drug Dev Ind Pharm; 2000 May; 26(5):563-6. PubMed ID: 10789070 [TBL] [Abstract][Full Text] [Related]
3. Ex vivo Skin Permeation Evaluation of An Innovative Transdermal Vehicle Using Nimesulide and Piroxicam as Model Drugs. Pereira RO; Pelisson E Silva TCC; de Oliveira Ferreira A; Brandao MAF; Raposo NRB; Polonini HC Curr Drug Deliv; 2017; 14(4):516-520. PubMed ID: 27557671 [TBL] [Abstract][Full Text] [Related]
4. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent. Aldwaikat M; Alarjah M Ultrason Sonochem; 2015 Jan; 22():580-7. PubMed ID: 24916997 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis. Park J; Lee H; Lim GS; Kim N; Kim D; Kim YC AAPS PharmSciTech; 2019 Jan; 20(3):96. PubMed ID: 30694397 [TBL] [Abstract][Full Text] [Related]
6. In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes. Meshali MM; Abdel-Aleem HM; Sakr FM; Nazzal S; El-Malah Y Pharmazie; 2008 Jan; 63(1):49-53. PubMed ID: 18271303 [TBL] [Abstract][Full Text] [Related]
7. Transdermal delivery of piroxicam using microemulsions. Park ES; Cui Y; Yun BJ; Ko IJ; Chi SC Arch Pharm Res; 2005 Feb; 28(2):243-8. PubMed ID: 15789759 [TBL] [Abstract][Full Text] [Related]
8. Effects of non-ionic surfactants as permeation enhancers towards piroxicam from the poloxamer gel through rat skins. Shin SC; Cho CW; Oh IJ Int J Pharm; 2001 Jul; 222(2):199-203. PubMed ID: 11427350 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of proniosomes as an alternative strategy to optimize piroxicam transdermal delivery. Alsarra IA J Microencapsul; 2009 May; 26(3):272-8. PubMed ID: 18720197 [TBL] [Abstract][Full Text] [Related]
10. Topical piroxicam in vitro release and in vivo anti-inflammatory and analgesic effects from palm oil esters-based nanocream. Abdulkarim MF; Abdullah GZ; Chitneni M; Salman IM; Ameer OZ; Yam MF; Mahdi ES; Sattar MA; Basri M; Noor AM Int J Nanomedicine; 2010 Nov; 5():915-24. PubMed ID: 21116332 [TBL] [Abstract][Full Text] [Related]
11. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Huang B; Dong WJ; Yang GY; Wang W; Ji CH; Zhou FN Drug Des Devel Ther; 2015; 9():3867-76. PubMed ID: 26229447 [TBL] [Abstract][Full Text] [Related]
12. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. Han T; Das DB J Pharm Sci; 2013 Oct; 102(10):3614-22. PubMed ID: 23873449 [TBL] [Abstract][Full Text] [Related]
13. Sensitive LC determination of piroxicam after in vitro transdermal permeation studies. Doliwa A; Santoyo S; Campanero MA; Ygartua P J Pharm Biomed Anal; 2001 Nov; 26(4):531-7. PubMed ID: 11516903 [TBL] [Abstract][Full Text] [Related]
14. Transdermal lontophoresis and skin retention of piroxicam from gels containing piroxicam: hydroxypropyl-beta-cyclodextrin complexes. Doliwa A; Santoyo S; Ygartua P Drug Dev Ind Pharm; 2001 Sep; 27(8):751-8. PubMed ID: 11699826 [TBL] [Abstract][Full Text] [Related]
15. Cyclodextrin enhanced transdermal delivery of piroxicam and carboxyfluorescein by electroporation. Murthy SN; Zhao YL; Sen A; Hui SW J Control Release; 2004 Oct; 99(3):393-402. PubMed ID: 15451597 [TBL] [Abstract][Full Text] [Related]
16. Permeation of piroxicam from the poloxamer gels. Shin SC; Cho CW; Choi HK Drug Dev Ind Pharm; 1999 Mar; 25(3):273-8. PubMed ID: 10071819 [TBL] [Abstract][Full Text] [Related]
17. Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. Alvarez-Román R; Merino G; Kalia YN; Naik A; Guy RH J Pharm Sci; 2003 Jun; 92(6):1138-46. PubMed ID: 12761803 [TBL] [Abstract][Full Text] [Related]
18. Fluorescein permeability and electrical resistance of human skin during low frequency ultrasound application. Cancel LM; Tarbell JM; Ben-Jebria A J Pharm Pharmacol; 2004 Sep; 56(9):1109-18. PubMed ID: 15324479 [TBL] [Abstract][Full Text] [Related]
19. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. Mitragotri S; Edwards DA; Blankschtein D; Langer R J Pharm Sci; 1995 Jun; 84(6):697-706. PubMed ID: 7562407 [TBL] [Abstract][Full Text] [Related]
20. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Manikkath J; Hegde AR; Kalthur G; Parekh HS; Mutalik S Int J Pharm; 2017 Apr; 521(1-2):110-119. PubMed ID: 28163223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]