These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32106947)

  • 21. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification.
    Qiang W; Wang X; Li W; Chen X; Li H; Xu D
    Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification.
    Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C
    Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification.
    Liu S; Lin Y; Liu T; Cheng C; Wei W; Wang L; Li F
    Biosens Bioelectron; 2014 Jun; 56():12-8. PubMed ID: 24445068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the activity of uracil-DNA glycosylase by using two-tailed reverse transcription PCR and gold nanoparticle-mediated silver nanocluster fluorescence: a new method for gene therapy-related enzyme detection.
    Zhang K; Huang W; Huang Y; Wang K; Zhu X; Xie M
    Mikrochim Acta; 2019 Feb; 186(3):181. PubMed ID: 30771014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of DNA 3'-phosphatase activity based on exonuclease III-assisted cascade recycling amplification reaction.
    Zhang Y; Wang Y; Rizvi SFA; Zhang Y; Zhang Y; Liu X; Zhang H
    Talanta; 2019 Nov; 204():499-506. PubMed ID: 31357325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria.
    Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J
    Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Target-mediated base-mismatch initiation of a non-enzymatic signal amplification network for highly sensitive sensing of Hg
    Li D; Yang F; Li X; Yuan R; Xiang Y
    Analyst; 2020 Jan; 145(2):507-512. PubMed ID: 31754671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemiluminescent determination of the activity of uracil-DNA glycosylase: Combining nicking enzyme assisted signal amplification and catalyzed hairpin assembly.
    Liu Q; Liu C; Zhu G; Xu H; Zhang XJ; Hu C; Xie Y; Zhang K; Wang H
    Mikrochim Acta; 2019 Feb; 186(3):179. PubMed ID: 30771006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating DNA structure switch with branched hairpins for the detection of uracil-DNA glycosylase activity and inhibitor screening.
    Zhu J; Hao Q; Liu Y; Guo Z; Rustam B; Jiang W
    Talanta; 2018 Mar; 179():51-56. PubMed ID: 29310268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM
    Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A DNA machine-based fluorescence amplification strategy for sensitive detection of uracil-DNA glycosylase activity.
    Wu Y; Wang L; Zhu J; Jiang W
    Biosens Bioelectron; 2015 Jun; 68():654-659. PubMed ID: 25660509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combination of a modified block PCR and endonuclease IV-based signal amplification system for ultra-sensitive detection of low-abundance point mutations.
    Xiao X; Xu A; Zhai J; Zhao M
    Methods; 2013 Dec; 64(3):255-9. PubMed ID: 23816791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs.
    Zhao Y; Wang Y; Liu S; Wang C; Liang J; Li S; Qu X; Zhang R; Yu J; Huang J
    Analyst; 2019 Aug; 144(17):5245-5253. PubMed ID: 31361292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive fluorescent detection of nucleic acids based on label-free enzymatic-assisted cascade signal amplification.
    Qin Y; Liao S; Huang Y; Zhao J; Zhao S
    Anal Chim Acta; 2018 Dec; 1039():91-97. PubMed ID: 30322557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP.
    Wang W; Li X; Tang K; Song Z; Luo X
    J Mater Chem B; 2020 Jul; 8(27):5945-5951. PubMed ID: 32667018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.
    Peng Y; Li D; Yuan R; Xiang Y
    Biosens Bioelectron; 2018 May; 105():1-5. PubMed ID: 29331900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification.
    Xue N; Wu S; Li Z; Miao X
    Anal Chim Acta; 2020 Apr; 1104():117-124. PubMed ID: 32106942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.
    Xu Y; Xu J; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Palindromic molecular beacon-based intramolecular strand-displacement amplification strategy for ultrasensitive detection of K-ras gene.
    Li H; Tang Y; Zhao W; Wu Z; Wang S; Yu R
    Anal Chim Acta; 2019 Aug; 1065():98-106. PubMed ID: 31005156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a bidirectional isothermal amplification strategy for the sensitive detection of transcription factors in cancer cells.
    Zhang Y; Li QN; Xiang DX; Zhou K; Xu Q; Zhang CY
    Chem Commun (Camb); 2020 Aug; 56(63):8952-8955. PubMed ID: 32638710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.