These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32107399)

  • 1. Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory(DFT) study.
    Wang Q; Song H; Pan S; Dong N; Wang X; Sun S
    Sci Rep; 2020 Feb; 10(1):3626. PubMed ID: 32107399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies.
    Wang S; Guo X; Liang T; Zhou Y; Luo Z
    Bioresour Technol; 2012 Jan; 104():722-8. PubMed ID: 22100230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Perspectives into Cellulose Fast Pyrolysis Kinetics Using a Py-GC × GC-FID/MS System.
    SriBala G; Vargas DC; Kostetskyy P; Van de Vijver R; Broadbelt LJ; Marin GB; Van Geem KM
    ACS Eng Au; 2022 Aug; 2(4):320-332. PubMed ID: 35996395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydration Pathways for Glucose and Cellobiose During Fast Pyrolysis.
    Easton MW; Nash JJ; Kenttämaa HI
    J Phys Chem A; 2018 Oct; 122(41):8071-8085. PubMed ID: 30216724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Cellulose Pyrolyzates via a Tube Reactor and a Pyrolyzer-Gas Chromatograph/Flame Ionization Detector-Based System.
    Kumagai S; Takahashi Y; Kameda T; Saito Y; Yoshioka T
    ACS Omega; 2021 May; 6(18):12022-12026. PubMed ID: 34056356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated and Natural Aging of Cellulose-Based Paper: Py-GC/MS Method.
    Kaszonyi A; Izsák L; Králik M; Jablonsky M
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis of Methyl Ricinoleate: Distribution and Characteristics of Fast and Slow Pyrolysis Products.
    Mao X; Xie Q; Duan Y; Yu S; Nie Y
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio dynamics of cellulose pyrolysis: nascent decomposition pathways at 327 and 600 °C.
    Agarwal V; Dauenhauer PJ; Huber GW; Auerbach SM
    J Am Chem Soc; 2012 Sep; 134(36):14958-72. PubMed ID: 22889121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime.
    Menares T; Herrera J; Romero R; Osorio P; Arteaga-Pérez LE
    Waste Manag; 2020 Feb; 102():21-29. PubMed ID: 31654876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate.
    Fukutome A; Kawamoto H; Saka S
    ChemSusChem; 2015 Jul; 8(13):2240-9. PubMed ID: 26099988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism for thermal decomposition of cellulose and its main products.
    Shen DK; Gu S
    Bioresour Technol; 2009 Dec; 100(24):6496-504. PubMed ID: 19625184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing primary and secondary reactions of cellulose pyrolysis.
    Patwardhan PR; Dalluge DL; Shanks BH; Brown RC
    Bioresour Technol; 2011 Apr; 102(8):5265-9. PubMed ID: 21354786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas chromatography/mass spectrometric characterisation of pyrolysis/silylation products of glucose and cellulose.
    Fabbri D; Chiavari G; Prati S; Vassura I; Vangelista M
    Rapid Commun Mass Spectrom; 2002; 16(24):2349-55. PubMed ID: 12478581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative study of the pyrolysis of levoglucosan to generate small molecular gases.
    Guo S; Liang H; Che D; Liu H; Sun B
    RSC Adv; 2019 Jun; 9(33):18791-18802. PubMed ID: 35516857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction pathways of β-D-glucopyranose pyrolysis to syngas in hydrogen plasma: a density functional theory study.
    Huang X; Cheng DG; Chen F; Zhan X
    Bioresour Technol; 2013 Sep; 143():447-54. PubMed ID: 23831743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations.
    Wang S; Xia Z; Hu Y; He Z; Uzoejinwa BB; Wang Q; Cao B; Xu S
    Bioresour Technol; 2017 Mar; 228():305-314. PubMed ID: 28086171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of inorganic salts on the primary pyrolysis products of cellulose.
    Patwardhan PR; Satrio JA; Brown RC; Shanks BH
    Bioresour Technol; 2010 Jun; 101(12):4646-55. PubMed ID: 20171877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric studies of fast pyrolysis of cellulose.
    Degenstein JC; Hurt M; Murria P; Easton M; Choudhari H; Yang L; Riedeman J; Carlsen MS; Nash JJ; Agrawal R; Delgass WN; Ribeiro FH; Kenttämaa HI
    Eur J Mass Spectrom (Chichester); 2015; 21(3):321-6. PubMed ID: 26307712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing in Analytical Pyrolysis: Py(HMDS)-GC/MS of Glucose and Cellulose Using Online Micro Reaction Sampler.
    Mattonai M; Tamburini D; Colombini MP; Ribechini E
    Anal Chem; 2016 Sep; 88(18):9318-25. PubMed ID: 27525449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics.
    Seshadri V; Westmoreland PR
    J Phys Chem A; 2012 Dec; 116(49):11997-2013. PubMed ID: 23082925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.