BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

996 related articles for article (PubMed ID: 32107477)

  • 41. Tipping microtubule dynamics, one protofilament at a time.
    Aher A; Akhmanova A
    Curr Opin Cell Biol; 2018 Feb; 50():86-93. PubMed ID: 29573640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration.
    Bance B; Seetharaman S; Leduc C; Boëda B; Etienne-Manneville S
    J Cell Sci; 2019 Apr; 132(7):. PubMed ID: 30858195
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microtubule-associated proteins and enzymes modifying tubulin.
    Peng N; Nakamura F
    Cytoskeleton (Hoboken); 2023 Mar; 80(3-4):60-76. PubMed ID: 36798013
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the 'multi-tubulin' hypothesis.
    Tischfield MA; Engle EC
    Biosci Rep; 2010 Apr; 30(5):319-30. PubMed ID: 20406197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interplay between microtubule dynamics and intracellular organization.
    de Forges H; Bouissou A; Perez F
    Int J Biochem Cell Biol; 2012 Feb; 44(2):266-74. PubMed ID: 22108200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microtubule and microtubule associated protein anomalies in psychiatric disease.
    Marchisella F; Coffey ET; Hollos P
    Cytoskeleton (Hoboken); 2016 Oct; 73(10):596-611. PubMed ID: 27112918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Microtubules: functional polymorphisms of tubulin and associated proteins (structural and motor MAP's)].
    Regnard C; Audebert S; Boucher D; Larcher JC; Eddé B; Denoulet P
    C R Seances Soc Biol Fil; 1996; 190(2-3):255-68. PubMed ID: 8869236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A microtubule bestiary: structural diversity in tubulin polymers.
    Chaaban S; Brouhard GJ
    Mol Biol Cell; 2017 Nov; 28(22):2924-2931. PubMed ID: 29084910
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Compartmentalization and plasticity of the microtubule network].
    Pilon A; Poüs C
    Med Sci (Paris); 2013 Feb; 29(2):194-9. PubMed ID: 23452607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconstitution of physiological microtubule dynamics using purified components.
    Kinoshita K; Arnal I; Desai A; Drechsel DN; Hyman AA
    Science; 2001 Nov; 294(5545):1340-3. PubMed ID: 11701928
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigating tubulin posttranslational modifications with specific antibodies.
    Magiera MM; Janke C
    Methods Cell Biol; 2013; 115():247-67. PubMed ID: 23973077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification of Tubulin with Controlled Posttranslational Modifications and Isotypes from Limited Sources by Polymerization-Depolymerization Cycles.
    Bodakuntla S; Jijumon AS; Janke C; Magiera MM
    J Vis Exp; 2020 Nov; (165):. PubMed ID: 33226030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generation of differentially modified microtubules using in vitro enzymatic approaches.
    Vemu A; Garnham CP; Lee DY; Roll-Mecak A
    Methods Enzymol; 2014; 540():149-66. PubMed ID: 24630106
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assembly and disassembly of plant microtubules: tubulin modifications and binding to MAPs.
    Cai G
    J Exp Bot; 2010 Mar; 61(3):623-6. PubMed ID: 20080825
    [No Abstract]   [Full Text] [Related]  

  • 55. Tubulin tails and their modifications regulate protein diffusion on microtubules.
    Bigman LS; Levy Y
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8876-8883. PubMed ID: 32245812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Back to the tubule: microtubule dynamics in Parkinson's disease.
    Pellegrini L; Wetzel A; Grannó S; Heaton G; Harvey K
    Cell Mol Life Sci; 2017 Feb; 74(3):409-434. PubMed ID: 27600680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Drosophila melanogaster mini spindles TOG3 utilizes unique structural elements to promote domain stability and maintain a TOG1- and TOG2-like tubulin-binding surface.
    Howard AE; Fox JC; Slep KC
    J Biol Chem; 2015 Apr; 290(16):10149-62. PubMed ID: 25720490
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A biophysical model of how α-tubulin carboxy-terminal tails tune kinesin-1 processivity along microtubule.
    Sataric MV; Sekulic DL; Zdravkovic S; Ralevic NM
    J Theor Biol; 2017 May; 420():152-157. PubMed ID: 28300595
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Class V β-tubulin alters dynamic instability and stimulates microtubule detachment from centrosomes.
    Bhattacharya R; Yang H; Cabral F
    Mol Biol Cell; 2011 Apr; 22(7):1025-34. PubMed ID: 21289088
    [TBL] [Abstract][Full Text] [Related]  

  • 60. XMAP215: a key component of the dynamic microtubule cytoskeleton.
    Kinoshita K; Habermann B; Hyman AA
    Trends Cell Biol; 2002 Jun; 12(6):267-73. PubMed ID: 12074886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.