BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 32107519)

  • 1. Thermal transport properties of monolayer MoSe
    Ma JJ; Zheng JJ; Li WD; Wang DH; Wang BT
    Phys Chem Chem Phys; 2020 Mar; 22(10):5832-5838. PubMed ID: 32107519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide.
    Yarali M; Brahmi H; Yan Z; Li X; Xie L; Chen S; Kumar S; Yoon M; Xiao K; Mavrokefalos A
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4921-4928. PubMed ID: 29322775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS
    Ghosh A; Ahmed SS; Shawkat MSA; Subrina S
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38906122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect engineering for thermal transport properties of nanocrystalline molybdenum diselenide.
    Sabbaghi S; Bazargan V; Hosseinian E
    Nanoscale; 2023 Aug; 15(30):12634-12647. PubMed ID: 37462987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles calculations of thermal transport properties in MoS
    Ma JJ; Zheng JJ; Zhu XL; Liu PF; Li WD; Wang BT
    Phys Chem Chem Phys; 2019 May; 21(20):10442-10448. PubMed ID: 31066395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX
    Jiang P; Qian X; Gu X; Yang R
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28727182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides.
    Zhang J; Li X; Xiao K; Sumpter BG; Ghosh AW; Liang L
    J Phys Condens Matter; 2020 Jan; 32(2):025306. PubMed ID: 31581144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique.
    Zhang X; Sun D; Li Y; Lee GH; Cui X; Chenet D; You Y; Heinz TF; Hone JC
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25923-9. PubMed ID: 26517143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon thermal transport in a graphene/MoSe
    Hong Y; Ju MG; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2018 Jan; 20(4):2637-2645. PubMed ID: 29319076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes.
    Zha XH; Zhou J; Zhou Y; Huang Q; He J; Francisco JS; Luo K; Du S
    Nanoscale; 2016 Mar; 8(11):6110-7. PubMed ID: 26932122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-scale analysis of the physical strength and phonon transport mechanisms of monolayer β-bismuthene.
    Chowdhury EH; Rahman MH; Bose P; Jayan R; Islam MM
    Phys Chem Chem Phys; 2020 Dec; 22(48):28238-28255. PubMed ID: 33295342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces.
    Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer SnI
    Xie QY; Liu PF; Ma JJ; Kuang FG; Zhang KW; Wang BT
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane thermal transport in black phosphorene/graphene layered heterostructures: a molecular dynamics study.
    Liang T; Zhang P; Yuan P; Zhai S
    Phys Chem Chem Phys; 2018 Aug; 20(32):21151-21162. PubMed ID: 30079924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review.
    Tian W; Cheng C; Wang C; Li W
    Recent Pat Nanotechnol; 2020; 14(4):294-306. PubMed ID: 32525786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit.
    Ding G; Gao GY; Huang Z; Zhang W; Yao K
    Nanotechnology; 2016 Sep; 27(37):375703. PubMed ID: 27487270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological dependent exciton dynamics and thermal transport in MoSe
    Gupta JD; Jangra P; Majee BP; Mishra AK
    Nanoscale Adv; 2023 May; 5(10):2756-2766. PubMed ID: 37205289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive Index Modulation in Monolayer Molybdenum Diselenide.
    Li M; Biswas S; Hail CU; Atwater HA
    Nano Lett; 2021 Sep; 21(18):7602-7608. PubMed ID: 34468150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment.
    Han HV; Lu AY; Lu LS; Huang JK; Li H; Hsu CL; Lin YC; Chiu MH; Suenaga K; Chu CW; Kuo HC; Chang WH; Li LJ; Shi Y
    ACS Nano; 2016 Jan; 10(1):1454-61. PubMed ID: 26716765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.