These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32107835)

  • 41. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids.
    Fafarman AT; Koh WK; Diroll BT; Kim DK; Ko DK; Oh SJ; Ye X; Doan-Nguyen V; Crump MR; Reifsnyder DC; Murray CB; Kagan CR
    J Am Chem Soc; 2011 Oct; 133(39):15753-61. PubMed ID: 21848336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.
    Bozyigit D; Jakob M; Yarema O; Wood V
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2915-9. PubMed ID: 23527751
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal response in van der Waals heterostructures.
    Gandi AN; Alshareef HN; Schwingenschlögl U
    J Phys Condens Matter; 2017 Jan; 29(3):035504. PubMed ID: 27869639
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced energy transport owing to nonlinear interface interaction.
    Su R; Yuan Z; Wang J; Zheng Z
    Sci Rep; 2016 Jan; 6():19628. PubMed ID: 26787363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Colloidal nanocrystals with molecular metal chalcogenide surface ligands.
    Kovalenko MV; Scheele M; Talapin DV
    Science; 2009 Jun; 324(5933):1417-20. PubMed ID: 19520953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells.
    Bozyigit D; Lin WM; Yazdani N; Yarema O; Wood V
    Nat Commun; 2015 Jan; 6():6180. PubMed ID: 25625647
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.
    Oh SJ; Berry NE; Choi JH; Gaulding EA; Paik T; Hong SH; Murray CB; Kagan CR
    ACS Nano; 2013 Mar; 7(3):2413-21. PubMed ID: 23368728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determinants of thermal conductivity and diffusivity in nanostructural semiconductors.
    Yang CC; Armellin J; Li S
    J Phys Chem B; 2008 Feb; 112(5):1482-6. PubMed ID: 18193865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications.
    Yang J; Choi MK; Kim DH; Hyeon T
    Adv Mater; 2016 Feb; 28(6):1176-207. PubMed ID: 26707709
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploiting the colloidal nanocrystal library to construct electronic devices.
    Choi JH; Wang H; Oh SJ; Paik T; Sung P; Sung J; Ye X; Zhao T; Diroll BT; Murray CB; Kagan CR
    Science; 2016 Apr; 352(6282):205-8. PubMed ID: 27124455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy.
    Fritzinger B; Moreels I; Lommens P; Koole R; Hens Z; Martins JC
    J Am Chem Soc; 2009 Mar; 131(8):3024-32. PubMed ID: 19199431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of the Young's modulus and thermal expansion of amorphous titania-doped tantala films.
    Abernathy MR; Hough J; Martin IW; Rowan S; Oyen M; Linn C; Faller JE
    Appl Opt; 2014 May; 53(15):3196-202. PubMed ID: 24922204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shear melting and recovery of crosslinkable cellulose nanocrystal-polymer gels.
    Rao A; Divoux T; McKinley GH; Hart AJ
    Soft Matter; 2019 May; 15(21):4401-4412. PubMed ID: 31095139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solution-processed germanium nanocrystal thin films as materials for low-cost optical and electronic devices.
    Holman ZC; Kortshagen UR
    Langmuir; 2009 Oct; 25(19):11883-9. PubMed ID: 19642659
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Suppressed carrier scattering in CdS-encapsulated PbS nanocrystal films.
    Moroz P; Kholmicheva N; Mellott B; Liyanage G; Rijal U; Bastola E; Huband K; Khon E; McBride K; Zamkov M
    ACS Nano; 2013 Aug; 7(8):6964-77. PubMed ID: 23889162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phonon thermal transport in a graphene/MoSe
    Hong Y; Ju MG; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2018 Jan; 20(4):2637-2645. PubMed ID: 29319076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ligand exchange on colloidal CdSe nanocrystals using thermally labile tert-butylthiol for improved photocurrent in nanocrystal films.
    Webber DH; Brutchey RL
    J Am Chem Soc; 2012 Jan; 134(2):1085-92. PubMed ID: 22142224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diamond Colloidal Probe Force Spectroscopy.
    Knittel P; Yoshikawa T; Nebel CE
    Anal Chem; 2019 May; 91(9):5537-5541. PubMed ID: 30969753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.