These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 32107946)
1. Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication. Morone G; Cocchi I; Paolucci S; Iosa M Expert Rev Med Devices; 2020 Mar; 17(3):223-233. PubMed ID: 32107946 [No Abstract] [Full Text] [Related]
2. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. Daunoraviciene K; Adomaviciene A; Grigonyte A; Griškevičius J; Juocevicius A Technol Health Care; 2018; 26(S2):533-542. PubMed ID: 29843276 [TBL] [Abstract][Full Text] [Related]
3. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
4. Robot-assisted rehabilitation of hand function. Balasubramanian S; Klein J; Burdet E Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421 [TBL] [Abstract][Full Text] [Related]
5. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Kwakkel G; Kollen BJ; Krebs HI Neurorehabil Neural Repair; 2008; 22(2):111-21. PubMed ID: 17876068 [TBL] [Abstract][Full Text] [Related]
6. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655 [TBL] [Abstract][Full Text] [Related]
7. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. Mazzoleni S; Duret C; Grosmaire AG; Battini E Biomed Res Int; 2017; 2017():8905637. PubMed ID: 29057269 [TBL] [Abstract][Full Text] [Related]
8. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process. Duret C; Courtial O; Grosmaire AG; Hutin E Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804 [TBL] [Abstract][Full Text] [Related]
9. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients. Panarese A; Colombo R; Sterpi I; Pisano F; Micera S Neurorehabil Neural Repair; 2012 Sep; 26(7):822-33. PubMed ID: 22374174 [TBL] [Abstract][Full Text] [Related]
10. Acceptability of robotic technology in neuro-rehabilitation: preliminary results on chronic stroke patients. Mazzoleni S; Turchetti G; Palla I; Posteraro F; Dario P Comput Methods Programs Biomed; 2014 Sep; 116(2):116-22. PubMed ID: 24461799 [TBL] [Abstract][Full Text] [Related]
11. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice. Duret C; Mazzoleni S NeuroRehabilitation; 2017; 41(1):5-15. PubMed ID: 28505985 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: A single-blind, randomised, controlled trial. Dehem S; Gilliaux M; Stoquart G; Detrembleur C; Jacquemin G; Palumbo S; Frederick A; Lejeune T Ann Phys Rehabil Med; 2019 Sep; 62(5):313-320. PubMed ID: 31028900 [TBL] [Abstract][Full Text] [Related]
13. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Bertani R; Melegari C; De Cola MC; Bramanti A; Bramanti P; Calabrò RS Neurol Sci; 2017 Sep; 38(9):1561-1569. PubMed ID: 28540536 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Klamroth-Marganska V; Blanco J; Campen K; Curt A; Dietz V; Ettlin T; Felder M; Fellinghauer B; Guidali M; Kollmar A; Luft A; Nef T; Schuster-Amft C; Stahel W; Riener R Lancet Neurol; 2014 Feb; 13(2):159-66. PubMed ID: 24382580 [TBL] [Abstract][Full Text] [Related]
15. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation. Sale P; Infarinato F; Del Percio C; Lizio R; Babiloni C; Foti C; Franceschini M Int J Rehabil Res; 2015 Dec; 38(4):294-305. PubMed ID: 26317486 [TBL] [Abstract][Full Text] [Related]
16. Robot-assisted therapy for upper limb paresis after stroke: Use of robotic algorithms in advanced practice. Grosmaire AG; Pila O; Breuckmann P; Duret C NeuroRehabilitation; 2022; 51(4):577-593. PubMed ID: 36530096 [TBL] [Abstract][Full Text] [Related]
17. Performance-based robotic assistance during rhythmic arm exercises. Leconte P; Ronsse R J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806 [TBL] [Abstract][Full Text] [Related]
18. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Taveggia G; Borboni A; Salvi L; Mulé C; Fogliaresi S; Villafañe JH; Casale R Eur J Phys Rehabil Med; 2016 Dec; 52(6):767-773. PubMed ID: 27406879 [TBL] [Abstract][Full Text] [Related]
20. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Stein J; Krebs HI; Frontera WR; Fasoli SE; Hughes R; Hogan N Am J Phys Med Rehabil; 2004 Sep; 83(9):720-8. PubMed ID: 15314537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]