BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32108033)

  • 1. Duplex DNA from Sites of Helicase-Polymerase Uncoupling Links Non-B DNA Structure Formation to Replicative Stress.
    Amparo C; Clark J; Bedell V; Murata-Collins JL; Martella M; Pichiorri F; Warner EF; Abdelhamid MAS; Waller ZAE; Smith SS
    Cancer Genomics Proteomics; 2020; 17(2):101-115. PubMed ID: 32108033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    Cell; 1996 Feb; 84(4):643-50. PubMed ID: 8598050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to study the coupling between replicative helicase and leading-strand DNA polymerase at the replication fork.
    Nandakumar D; Patel SS
    Methods; 2016 Oct; 108():65-78. PubMed ID: 27173619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks.
    Jones JM; Nakai H
    J Mol Biol; 2001 Oct; 312(5):935-47. PubMed ID: 11580240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate.
    Jones JM; Nakai H
    J Mol Biol; 1999 Jun; 289(3):503-16. PubMed ID: 10356325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes.
    Sparks MA; Singh SP; Burgers PM; Galletto R
    Nucleic Acids Res; 2019 Sep; 47(16):8595-8605. PubMed ID: 31340040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time investigation of SV40 large T-antigen helicase activity using surface plasmon resonance.
    Plyler J; Jasheway K; Tuesuwan B; Karr J; Brennan JS; Kerwin SM; David WM
    Cell Biochem Biophys; 2009; 53(1):43-52. PubMed ID: 19048412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of CMG with strand-specific DNA blocks supports an internal unwinding mode for the eukaryotic replicative helicase.
    Langston L; O'Donnell M
    Elife; 2017 Mar; 6():. PubMed ID: 28346143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Werner Syndrome Helicase Coordinates Sequential Strand Displacement and FEN1-Mediated Flap Cleavage during Polymerase δ Elongation.
    Li B; Reddy S; Comai L
    Mol Cell Biol; 2017 Feb; 37(3):. PubMed ID: 27849570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures.
    Dahan D; Tsirkas I; Dovrat D; Sparks MA; Singh SP; Galletto R; Aharoni A
    Nucleic Acids Res; 2018 Dec; 46(22):11847-11857. PubMed ID: 30395308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CMG Helicase Bypasses DNA-Protein Cross-Links to Facilitate Their Repair.
    Sparks JL; Chistol G; Gao AO; Räschle M; Larsen NB; Mann M; Duxin JP; Walter JC
    Cell; 2019 Jan; 176(1-2):167-181.e21. PubMed ID: 30595447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks.
    Flores MJ; Bierne H; Ehrlich SD; Michel B
    EMBO J; 2001 Feb; 20(3):619-29. PubMed ID: 11157768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
    Gan H; Yu C; Devbhandari S; Sharma S; Han J; Chabes A; Remus D; Zhang Z
    Mol Cell; 2017 Oct; 68(2):446-455.e3. PubMed ID: 29033319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simian virus 40 large T-antigen G-quadruplex DNA helicase inhibition by G-quadruplex DNA-interactive agents.
    Tuesuwan B; Kern JT; Thomas PW; Rodriguez M; Li J; David WM; Kerwin SM
    Biochemistry; 2008 Feb; 47(7):1896-909. PubMed ID: 18205402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinated leading and lagging strand DNA synthesis on a minicircular template.
    Lee J; Chastain PD; Kusakabe T; Griffith JD; Richardson CC
    Mol Cell; 1998 Jun; 1(7):1001-10. PubMed ID: 9651583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication.
    Yuzhakov A; Turner J; O'Donnell M
    Cell; 1996 Sep; 86(6):877-86. PubMed ID: 8808623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
    Schauer GD; O'Donnell ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system.
    Christensen J; Tattersall P
    J Virol; 2002 Jul; 76(13):6518-31. PubMed ID: 12050365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase.
    Wallgren M; Mohammad JB; Yan KP; Pourbozorgi-Langroudi P; Ebrahimi M; Sabouri N
    Nucleic Acids Res; 2016 Jul; 44(13):6213-31. PubMed ID: 27185885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RuvAB is essential for replication forks reversal in certain replication mutants.
    Baharoglu Z; Petranovic M; Flores MJ; Michel B
    EMBO J; 2006 Feb; 25(3):596-604. PubMed ID: 16424908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.