BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 32108316)

  • 1. Machine learning methods for microbiome studies.
    Namkung J
    J Microbiol; 2020 Mar; 58(3):206-216. PubMed ID: 32108316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taxonomy-aware feature engineering for microbiome classification.
    Oudah M; Henschel A
    BMC Bioinformatics; 2018 Jun; 19(1):227. PubMed ID: 29907097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data.
    Walker AR; Datta S
    Biol Direct; 2019 Jul; 14(1):11. PubMed ID: 31340852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting postmortem interval based on microbial community sequences and machine learning algorithms.
    Liu R; Gu Y; Shen M; Li H; Zhang K; Wang Q; Wei X; Zhang H; Wu D; Yu K; Cai W; Wang G; Zhang S; Sun Q; Huang P; Wang Z
    Environ Microbiol; 2020 Jun; 22(6):2273-2291. PubMed ID: 32227435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning to predict microbial community functions: An analysis of dissolved organic carbon from litter decomposition.
    Thompson J; Johansen R; Dunbar J; Munsky B
    PLoS One; 2019; 14(7):e0215502. PubMed ID: 31260460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease.
    Giuffrè M; Moretti R; Tiribelli C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of machine learning techniques for creating urban microbial fingerprints.
    Ryan FJ
    Biol Direct; 2019 Aug; 14(1):13. PubMed ID: 31420049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of the Conjunctival Bacterial Microbiota Reveals the Feasibility of Utilizing a Microbiome-Based Machine Learning Model to Differentially Diagnose Microbial Keratitis and the Core Components of the Conjunctival Bacterial Interaction Network.
    Ren Z; Li W; Liu Q; Dong Y; Huang Y
    Front Cell Infect Microbiol; 2022; 12():860370. PubMed ID: 35558101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of supervised and unsupervised machine learning algorithms applied to human microbiome.
    Kalluçi E; Preni B; Dhamo X; Noka E; Bardhi S; Macchia A; Bonetti G; Dhuli K; Donato K; Bertelli M; Zambrano LJM; Janaqi S
    Clin Ter; 2024; 175(3):98-116. PubMed ID: 38767067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based approaches for cancer prediction using microbiome data.
    Freitas P; Silva F; Sousa JV; Ferreira RM; Figueiredo C; Pereira T; Oliveira HP
    Sci Rep; 2023 Jul; 13(1):11821. PubMed ID: 37479864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.
    Schmedes SE; Woerner AE; Novroski NMM; Wendt FR; King JL; Stephens KM; Budowle B
    Forensic Sci Int Genet; 2018 Jan; 32():50-61. PubMed ID: 29065388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics.
    Maringanti VS; Bucci V; Gerber GK
    mSystems; 2022 Oct; 7(5):e0013222. PubMed ID: 36069455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks.
    Lo C; Marculescu R
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):314. PubMed ID: 31216991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust biomarker discovery for microbiome-wide association studies.
    Zhu Q; Li B; He T; Li G; Jiang X
    Methods; 2020 Feb; 173():44-51. PubMed ID: 31238097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population Informative Markers Selected Using Wright's Fixation Index and Machine Learning Improves Human Identification Using the Skin Microbiome.
    Sherier AJ; Woerner AE; Budowle B
    Appl Environ Microbiol; 2021 Sep; 87(20):e0120821. PubMed ID: 34379455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples.
    Nakano Y; Takeshita T; Kamio N; Shiota S; Shibata Y; Suzuki N; Yoneda M; Hirofuji T; Yamashita Y
    Artif Intell Med; 2014 Feb; 60(2):97-101. PubMed ID: 24439218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning on microbiome research in gastrointestinal cancer.
    Cheung H; Yu J
    J Gastroenterol Hepatol; 2021 Apr; 36(4):817-822. PubMed ID: 33880761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.