BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32108671)

  • 21. Evaluation of VEP perimetry in normal subjects and glaucoma patients.
    Bengtsson B
    Acta Ophthalmol Scand; 2002 Dec; 80(6):620-6. PubMed ID: 12485283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency-doubling technology perimetry for detection of the development of visual field defects in glaucoma suspect eyes: a prospective study.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    JAMA Ophthalmol; 2014 Jan; 132(1):77-83. PubMed ID: 24177945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Standard achromatic perimetry, short wavelength automated perimetry, and frequency doubling technology for detection of glaucoma damage.
    Soliman MA; de Jong LA; Ismaeil AA; van den Berg TJ; de Smet MD
    Ophthalmology; 2002 Mar; 109(3):444-54. PubMed ID: 11874745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of 24-2 Faster, Fast, and Standard Programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for Perimetry in Patients With Manifest and Suspect Glaucoma.
    Thulasidas M; Patyal S
    J Glaucoma; 2020 Nov; 29(11):1070-1076. PubMed ID: 32890104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting conversion to glaucoma using standard automated perimetry and frequency doubling technology.
    Takahashi G; Demirel S; Johnson CA
    Graefes Arch Clin Exp Ophthalmol; 2017 Apr; 255(4):797-803. PubMed ID: 28110356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an Age-corrected Normative Database for Saccadic Vector Optokinetic Perimetry (SVOP).
    Tatham AJ; McClean P; Murray IC; McTrusty AD; Cameron LA; Perperidis A; Brash HM; Fleck BW; Minns RA
    J Glaucoma; 2020 Dec; 29(12):1106-1114. PubMed ID: 33264163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice.
    Rowe FJ; Czanner G; Somerville T; Sood I; Sood D
    Curr Eye Res; 2021 Jan; 46(1):83-95. PubMed ID: 32564629
    [No Abstract]   [Full Text] [Related]  

  • 28. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma.
    Artes PH; Hutchison DM; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2451-7. PubMed ID: 15980235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flicker-defined form perimetry in glaucoma patients.
    Horn FK; Kremers J; Mardin CY; Jünemann AG; Adler W; Tornow RP
    Graefes Arch Clin Exp Ophthalmol; 2015 Mar; 253(3):447-55. PubMed ID: 25511293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures?
    Schrems WA; Schrems-Hoesl LM; Mardin CY; Laemmer R; Kruse FE; Horn FK
    J Glaucoma; 2017 Apr; 26(4):373-382. PubMed ID: 28118204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma.
    Leeprechanon N; Giaconi JA; Manassakorn A; Hoffman D; Caprioli J
    Ophthalmology; 2007 May; 114(5):931-7. PubMed ID: 17397926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated perimetry detects visual field loss before manual Goldmann perimetry.
    Katz J; Tielsch JM; Quigley HA; Sommer A
    Ophthalmology; 1995 Jan; 102(1):21-6. PubMed ID: 7831036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repeatability of Online Circular Contrast Perimetry Compared to Standard Automated Perimetry.
    Meyerov J; Chen Y; Busija L; Green C; Skalicky SE
    J Glaucoma; 2024 Jul; 33(7):505-515. PubMed ID: 38595156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients.
    Hirasawa K; Shoji N; Kasahara M; Matsumura K; Shimizu K
    Sci Rep; 2016 May; 6():25563. PubMed ID: 27149561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glaucomatous damage patterns by short-wavelength automated perimetry (SWAP) in glaucoma suspects.
    Polo V; Larrosa JM; Pinilla I; Gonzalvo F; Ferreras A; Honrubia FM
    Eur J Ophthalmol; 2002; 12(1):49-54. PubMed ID: 11936444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifocal objective perimetry in the detection of glaucomatous field loss.
    Goldberg I; Graham SL; Klistorner AI
    Am J Ophthalmol; 2002 Jan; 133(1):29-39. PubMed ID: 11755837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slowed Saccadic Reaction Times in Seemingly Normal Parts of Glaucomatous Visual Fields.
    Thepass G; Lemij HG; Vermeer KA; van der Steen J; Pel JJM
    Front Med (Lausanne); 2021; 8():679297. PubMed ID: 34513866
    [No Abstract]   [Full Text] [Related]  

  • 38. A review of current technology used in evaluating visual function in glaucoma.
    Turalba AV; Grosskreutz C
    Semin Ophthalmol; 2010; 25(5-6):309-16. PubMed ID: 21091017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ability of short-wavelength automated perimetry to predict conversion to glaucoma.
    van der Schoot J; Reus NJ; Colen TP; Lemij HG
    Ophthalmology; 2010 Jan; 117(1):30-4. PubMed ID: 19896194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography.
    Lopez-Peña MJ; Ferreras A; Larrosa JM; Polo V; Pablo LE
    J Glaucoma; 2011 Sep; 20(7):422-32. PubMed ID: 21278593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.