BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32108769)

  • 1. 400  m rolling-shutter-based optical camera communications link.
    Eso E; Teli S; Bani Hassan N; Vitek S; Ghassemlooy Z; Zvanovec S
    Opt Lett; 2020 Mar; 45(5):1059-1062. PubMed ID: 32108769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Camera Communications for IoT-Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter.
    Teli SR; Matus V; Zvanovec S; Perez-Jimenez R; Vitek S; Ghassemlooy Z
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust OCC System Optimized for Low-Frame-Rate Receivers.
    Dobre RA; Preda RO; Badea RA
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rolling Shutter Inversion: Bring Rolling Shutter Images to High Framerate Global Shutter Video.
    Fan B; Dai Y; Li H
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):6214-6230. PubMed ID: 36269907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications.
    Lin YS; Chow CW; Liu Y; Chang YH; Lin KH; Wang YC; Chen YY
    Opt Express; 2021 Sep; 29(20):31680-31688. PubMed ID: 34615256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curved OLED-based NLOS optical camera communications links.
    Teli SR; Matus V; Aguiar CL; Perez-Jimenez R; Ghassemlooy Z; Zvanovec S
    Appl Opt; 2023 Oct; 62(30):8204-8210. PubMed ID: 38038119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavy water-to-air optical camera communication system using rolling shutter image sensor and long short term memory neural network.
    Tsai SY; Chang YH; Chow CW
    Opt Express; 2024 Feb; 32(5):6814-6822. PubMed ID: 38439378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor.
    Tsai DC; Chang YH; Chow CW; Liu Y; Yeh CH; Peng CW; Hsu LS
    Opt Express; 2022 May; 30(10):16069-16077. PubMed ID: 36221459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some practical constraints and solutions for optical camera communication.
    Liu W; Xu Z
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190191. PubMed ID: 32114916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical camera communication for mobile payments using an LED panel light.
    Chen HW; Wen SS; Liu Y; Fu M; Weng ZC; Zhang M
    Appl Opt; 2018 Jul; 57(19):5288-5294. PubMed ID: 30117816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric modeling and experimental measurement of rolling shutter characteristics for optical camera communication using undersampled modulation.
    Dong K; Ke X; Zhang X; Wang M
    Appl Opt; 2022 Sep; 61(27):7838-7845. PubMed ID: 36255906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical camera communications link using an LED-coupled illuminating optical fiber.
    Teli SR; Eollosova K; Zvanovec S; Ghassemlooy Z; Komanec M
    Opt Lett; 2021 Jun; 46(11):2622-2625. PubMed ID: 34061072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmanned-aerial-vehicle based optical camera communication system using light-diffusing fiber and rolling-shutter image-sensor.
    Chang YH; Tsai SY; Chow CW; Wang CC; Tsai DC; Liu Y; Yeh CH
    Opt Express; 2023 May; 31(11):18670-18679. PubMed ID: 37381574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Implementation of a Hybrid Optical Camera Communication System for Indoor Applications.
    Nguyen H; Le NT; Le DTA; Jang YM
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimentally Derived Feasibility of Optical Camera Communications under Turbulence and Fog Conditions.
    Matus V; Eso E; Teli SR; Perez-Jimenez R; Zvanovec S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for signal clock and exposure estimation in rolling shutter optical camera communication.
    Jurado-Verdu C; Guerra V; Rabadan J; Perez-Jimenez R
    Opt Express; 2022 Jun; 30(12):20261-20277. PubMed ID: 36224776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications.
    Teli SR; Zvanovec S; Ghassemlooy Z
    Opt Express; 2019 Aug; 27(17):24082-24092. PubMed ID: 31510302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-line-of-sight optical camera communications based on CPWM and a convolutional neural network.
    Wan X; Lin B; Ghassemlooy Z; Huang T; Luo J; Ding Y
    Appl Opt; 2023 Oct; 62(28):7367-7372. PubMed ID: 37855504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation.
    Liu L; Deng R; Chen LK
    Opt Express; 2019 Nov; 27(23):33840-33846. PubMed ID: 31878443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial frequency-based angular behavior of a short-range flicker-free MIMO-OCC link.
    Teli SR; Zvanovec S; Perez-Jimenez R; Ghassemlooy Z
    Appl Opt; 2020 Nov; 59(33):10357-10368. PubMed ID: 33361967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.