BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32108776)

  • 1. On the use of light polarization to investigate the size, shape, and refractive index dependence of backscattering Ångström exponents.
    Miffre A; Cholleton D; Rairoux P
    Opt Lett; 2020 Mar; 45(5):1084-1087. PubMed ID: 32108776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-wavelength Mie-scattering Scheimpflug lidar system developed for the studies of the aerosol extinction coefficient and the Ångström exponent.
    Mei L; Kong Z; Ma T
    Opt Express; 2018 Nov; 26(24):31942-31956. PubMed ID: 30650773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerosol microphysical parameters' vertical profiles measured by a dual Raman-Mie lidar during 2007-2013 at Hefei, China.
    Hu S; Xu C; Ji Y; Hu H
    Appl Opt; 2019 Feb; 58(6):1537-1546. PubMed ID: 30874044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backscattering measurements of micron-sized spherical particles.
    Heffernan BM; Heinson YW; Maughan JB; Chakrabarti A; Sorensen CM
    Appl Opt; 2016 Apr; 55(12):3214-8. PubMed ID: 27140090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory.
    Kolgotin A; Müller D; Chemyakin E; Romanov A
    Appl Opt; 2016 Dec; 55(34):9839-9849. PubMed ID: 27958480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Study of UV Scattering Polarization Properties of Spherical Particles of Haze.
    Zhao TF; Wang C; Ke XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):665-71. PubMed ID: 30148336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV polarization lidar for remote sensing new particles formation in the atmosphere.
    David G; Thomas B; Dupart Y; D'Anna B; George C; Miffre A; Rairoux P
    Opt Express; 2014 May; 22 Suppl 3():A1009-22. PubMed ID: 24922365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the depolarization capabilities of nonspherical particles in a super-ellipsoidal shape space.
    Bi L; Lin W; Liu D; Zhang K
    Opt Express; 2018 Jan; 26(2):1726-1742. PubMed ID: 29402043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-filter analysis for retrieval of microphysical particle parameters: a quality-assurance method applied to 3 backscatter (β) +2 extinction (α) optical data taken with HSRL/Raman lidar.
    Kolgotin A; Müller D; Veselovskii I; Korenskiy M; Wang X
    Appl Opt; 2023 Jul; 62(19):5203-5223. PubMed ID: 37707225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dual-wavelength Mie lidar observations of tropospheric aerosols].
    Chi RL; Wu DC; Liu B; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1468-72. PubMed ID: 19810510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships.
    Perrone MR; Romano S; Orza JA
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16570-89. PubMed ID: 26077321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring wavelength dependence of AOD and Ångström exponent over a sub-tropical station in South Africa using AERONET data: influence of meteorology, long-range transport and curvature effect.
    Kumar KR; Sivakumar V; Reddy RR; Gopal KR; Adesina AJ
    Sci Total Environ; 2013 Sep; 461-462():397-408. PubMed ID: 23747555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths.
    Sugimoto N; Lee CH
    Appl Opt; 2006 Oct; 45(28):7468-74. PubMed ID: 16983435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm.
    Yang M; Ren KF; Gou M; Sheng X
    Opt Lett; 2013 Jun; 38(11):1784-6. PubMed ID: 23722743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm.
    Liu P; Zhang Y; Martin ST
    Environ Sci Technol; 2013; 47(23):13594-601. PubMed ID: 24191734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical particle sizing in backscatter.
    Damaschke N; Nobach H; Semidetnov N; Tropea C
    Appl Opt; 2002 Sep; 41(27):5713-27. PubMed ID: 12269572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent backscatter enhancement in single scattering.
    Zhou C
    Opt Express; 2018 May; 26(10):A508-A519. PubMed ID: 29801257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dust optical properties retrieved from ground-based polarimetric measurements.
    Li Z; Goloub P; Blarel L; Damiri B; Podvin T; Jankowiak I
    Appl Opt; 2007 Mar; 46(9):1548-53. PubMed ID: 17334447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES.
    Burton SP; Hostetler CA; Cook AL; Hair JW; Seaman ST; Scola S; Harper DB; Smith JA; Fenn MA; Ferrare RA; Saide PE; Chemyakin EV; Müller D
    Appl Opt; 2018 Jul; 57(21):6061-6075. PubMed ID: 30118035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.