These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 32108864)

  • 1. 2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions.
    Zhu K; Anastassiou D
    Bioinformatics; 2020 Jun; 36(11):3588-3589. PubMed ID: 32108864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EnImpute: imputing dropout events in single-cell RNA-sequencing data via ensemble learning.
    Zhang XF; Ou-Yang L; Yang S; Zhao XM; Hu X; Yan H
    Bioinformatics; 2019 Nov; 35(22):4827-4829. PubMed ID: 31125056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMF-Impute: an accurate imputation tool for single-cell RNA-seq data.
    Xu J; Cai L; Liao B; Zhu W; Yang J
    Bioinformatics; 2020 May; 36(10):3139-3147. PubMed ID: 32073612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scRMD: imputation for single cell RNA-seq data via robust matrix decomposition.
    Chen C; Wu C; Wu L; Wang X; Deng M; Xi R
    Bioinformatics; 2020 May; 36(10):3156-3161. PubMed ID: 32119079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scDoc: correcting drop-out events in single-cell RNA-seq data.
    Ran D; Zhang S; Lytal N; An L
    Bioinformatics; 2020 Aug; 36(15):4233-4239. PubMed ID: 32365169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TsImpute: an accurate two-step imputation method for single-cell RNA-seq data.
    Zheng W; Min W; Wang S
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38039139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imputing dropouts for single-cell RNA sequencing based on multi-objective optimization.
    Jin K; Li B; Yan H; Zhang XF
    Bioinformatics; 2022 Jun; 38(12):3222-3230. PubMed ID: 35485740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.
    Ye P; Ye W; Ye C; Li S; Ye L; Ji G; Wu X
    Bioinformatics; 2020 Feb; 36(3):789-797. PubMed ID: 31392316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.
    Andreatta M; Carmona SJ
    Bioinformatics; 2021 May; 37(6):882-884. PubMed ID: 32845323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scRNAss: a single-cell RNA-seq assembler via imputing dropouts and combing junctions.
    Liu J; Liu X; Ren X; Li G
    Bioinformatics; 2019 Nov; 35(21):4264-4271. PubMed ID: 30951147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion.
    Pan X; Li Z; Qin S; Yu M; Hu H
    BMC Genomics; 2021 Nov; 22(1):860. PubMed ID: 34844559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRMC: a fast and robust method for the imputation of scRNA-seq data.
    Wu H; Wang X; Chu M; Xiang R; Zhou K
    RNA Biol; 2021 Oct; 18(sup1):172-181. PubMed ID: 34459719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEsingle for detecting three types of differential expression in single-cell RNA-seq data.
    Miao Z; Deng K; Wang X; Zhang X
    Bioinformatics; 2018 Sep; 34(18):3223-3224. PubMed ID: 29688277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scWMC: weighted matrix completion-based imputation of scRNA-seq data via prior subspace information.
    Su Y; Wang F; Zhang S; Liang Y; Wong KC; Li X
    Bioinformatics; 2022 Sep; 38(19):4537-4545. PubMed ID: 35984287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPARSim single cell: a count data simulator for scRNA-seq data.
    Baruzzo G; Patuzzi I; Di Camillo B
    Bioinformatics; 2020 Mar; 36(5):1468-1475. PubMed ID: 31598633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.