BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32109003)

  • 1. The production of isoprene from cellulose using recombinant Clostridium cellulolyticum strains expressing isoprene synthase.
    Janke C; Gaida S; Jennewein S
    Microbiologyopen; 2020 Apr; 9(4):e1008. PubMed ID: 32109003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production.
    Liu CL; Bi HR; Bai Z; Fan LH; Tan TW
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):239-250. PubMed ID: 30374674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose.
    Gaida SM; Liedtke A; Jentges AH; Engels B; Jennewein S
    Microb Cell Fact; 2016 Jan; 15():6. PubMed ID: 26758196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway.
    Zhao Y; Yang J; Qin B; Li Y; Sun Y; Su S; Xian M
    Appl Microbiol Biotechnol; 2011 Jun; 90(6):1915-22. PubMed ID: 21468716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnology of cyanobacterial isoprene production.
    Chaves JE; Melis A
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6451-6458. PubMed ID: 29802477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene.
    Bentley FK; Zurbriggen A; Melis A
    Mol Plant; 2014 Jan; 7(1):71-86. PubMed ID: 24157609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of isoprene production in Escherichia coli by rational optimization of RBSs and key enzymes screening.
    Li M; Chen H; Liu C; Guo J; Xu X; Zhang H; Nian R; Xian M
    Microb Cell Fact; 2019 Jan; 18(1):4. PubMed ID: 30626394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species.
    Ren Z; Ward TE; Logan BE; Regan JM
    J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli.
    Yang J; Zhao G; Sun Y; Zheng Y; Jiang X; Liu W; Xian M
    Bioresour Technol; 2012 Jan; 104():642-7. PubMed ID: 22133602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.
    Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H
    Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose.
    Higashide W; Li Y; Yang Y; Liao JC
    Appl Environ Microbiol; 2011 Apr; 77(8):2727-33. PubMed ID: 21378054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic Production of Isoprene by Engineered
    Aldridge J; Carr S; Weber KA; Buan NR
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound.
    Englund E; Shabestary K; Hudson EP; Lindberg P
    Metab Eng; 2018 Sep; 49():164-177. PubMed ID: 30025762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli.
    Liu CL; Dong HG; Zhan J; Liu X; Yang Y
    J Appl Microbiol; 2019 Apr; 126(4):1128-1139. PubMed ID: 30656788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Isoprene Production by Reconstruction of Metabolic Balance between Strengthened Precursor Supply and Improved Isoprene Synthase in Saccharomyces cerevisiae.
    Yao Z; Zhou P; Su B; Su S; Ye L; Yu H
    ACS Synth Biol; 2018 Sep; 7(9):2308-2316. PubMed ID: 30145882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia.
    Desvaux M
    FEMS Microbiol Rev; 2005 Sep; 29(4):741-64. PubMed ID: 16102601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering microbes for isoprene production.
    Ye L; Lv X; Yu H
    Metab Eng; 2016 Nov; 38():125-138. PubMed ID: 27424210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli.
    Yang J; Xian M; Su S; Zhao G; Nie Q; Jiang X; Zheng Y; Liu W
    PLoS One; 2012; 7(4):e33509. PubMed ID: 22558074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advances in metabolic engineering of Escherichia coli for isoprene biosynthesis].
    Guo J; Cao Y; Xian M; Liu H
    Sheng Wu Gong Cheng Xue Bao; 2016 Aug; 32(8):1026-1037. PubMed ID: 29022304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of isoprene emission from poplar leaves throughout a day.
    Wiberley AE; Donohue AR; Westphal MM; Sharkey TD
    Plant Cell Environ; 2009 Jul; 32(7):939-47. PubMed ID: 19389050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.