BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32109008)

  • 1. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending π-Conjugation and Integrating Multi-Redox Centers into One Molecule for High-Capacity Organic Cathodes.
    Wang Z; Qi Q; Jin W; Zhao X; Huang X; Li Y
    ChemSusChem; 2021 Sep; 14(18):3858-3866. PubMed ID: 34258888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance.
    Wang J; Zhao H; Xu L; Yang Y; He G; Du Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35469-35476. PubMed ID: 30252431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel π-conjugated poly(biphenyl diimide) with full utilization of carbonyls as a highly stable organic electrode for Li-ion batteries.
    Wang Z; Zhang B; Zhang Y; Yan N; He G
    RSC Adv; 2020 Aug; 10(52):31049-31055. PubMed ID: 35520648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the Role of Aromatic Ring Size in Tuning the Electrochemical Performance of Small-Molecule Imide Cathodes for Lithium-Ion Batteries.
    Chen J; Gu S; Hao R; Liu K; Wang Z; Li Z; Yuan H; Guo H; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44330-44337. PubMed ID: 36125517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries.
    Li L; Gong HX; Chen DY; Lin MJ
    Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li
    Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y
    ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries.
    Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery.
    Ulissi U; Elia GA; Jeong S; Reiter J; Tsiouvaras N; Passerini S; Hassoun J
    Chemistry; 2018 Mar; 24(13):3178-3185. PubMed ID: 29244897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization.
    Li L; Hong YJ; Chen DY; Lin MJ
    Chemistry; 2017 Nov; 23(65):16612-16620. PubMed ID: 28967155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the 4 V-class n-type organic lithium-ion positive electrode materials: the case of conjugated triflimides and cyanamides.
    Guo X; Apostol P; Zhou X; Wang J; Lin X; Rambabu D; Du M; Er S; Vlad A
    Energy Environ Sci; 2024 Jan; 17(1):173-182. PubMed ID: 38173560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Electron Transfer-Based High-Capacity Organic Lithium-Iodine (Chlorine) Batteries.
    Li X; Wang Y; Lu J; Li S; Li P; Huang Z; Liang G; He H; Zhi C
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310168. PubMed ID: 37656770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Li4C8H2O6 nanosheets for lithium-ion batteries.
    Wang S; Wang L; Zhang K; Zhu Z; Tao Z; Chen J
    Nano Lett; 2013 Sep; 13(9):4404-9. PubMed ID: 23978244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.