These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity. Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424 [TBL] [Abstract][Full Text] [Related]
26. Charge Compensation Modulation of the Thermoelectric Properties in AgSbTe Li K; Li Z; Yang L; Xiao C; Xie Y Inorg Chem; 2019 Jul; 58(14):9205-9212. PubMed ID: 31251597 [TBL] [Abstract][Full Text] [Related]
27. Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 ≤ x ≤ 0.025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis. Zhang Q; Su X; Yan Y; Xie H; Liang T; You Y; Tang X; Uher C ACS Appl Mater Interfaces; 2016 Feb; 8(5):3268-76. PubMed ID: 26780919 [TBL] [Abstract][Full Text] [Related]
28. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies. Wei W; Chang C; Yang T; Liu J; Tang H; Zhang J; Li Y; Xu F; Zhang Z; Li JF; Tang G J Am Chem Soc; 2018 Jan; 140(1):499-505. PubMed ID: 29243922 [TBL] [Abstract][Full Text] [Related]
29. Increased effective mass and carrier concentration responsible for the improved thermoelectric performance of the nominal compound Cu Cui J; Cai G; Ren W RSC Adv; 2018 Jun; 8(38):21637-21643. PubMed ID: 35539932 [TBL] [Abstract][Full Text] [Related]
31. Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. Zhao LD; Zhang X; Wu H; Tan G; Pei Y; Xiao Y; Chang C; Wu D; Chi H; Zheng L; Gong S; Uher C; He J; Kanatzidis MG J Am Chem Soc; 2016 Feb; 138(7):2366-73. PubMed ID: 26871965 [TBL] [Abstract][Full Text] [Related]
32. Electronic and thermoelectric properties of Zn and Se double substituted tetrahedrite. Tippireddy S; Chetty R; Raut KK; Naik MH; Mukharjee PK; Jain M; Nath R; Wojciechowski K; Mallik RC Phys Chem Chem Phys; 2018 Nov; 20(45):28667-28677. PubMed ID: 30406779 [TBL] [Abstract][Full Text] [Related]
33. Significant effect of Mg-pressure-controlled annealing: non-stoichiometry and thermoelectric properties of Mg Kato D; Iwasaki K; Yoshino M; Yamada T; Nagasaki T Phys Chem Chem Phys; 2018 Oct; 20(40):25939-25950. PubMed ID: 30294743 [TBL] [Abstract][Full Text] [Related]
34. Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials. Hwang JY; Mun HA; Kim SI; Lee KM; Kim J; Lee KH; Kim SW Inorg Chem; 2014 Dec; 53(24):12732-8. PubMed ID: 25402498 [TBL] [Abstract][Full Text] [Related]
35. Thermoelectric Properties of Hexagonal M₂C₃ (M = As, Sb, and Bi) Monolayers from First-Principles Calculations. Zhu XL; Liu PF; Xie G; Zhou WX; Wang BT; Zhang G Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30979004 [TBL] [Abstract][Full Text] [Related]
37. A strategy for boosting the thermoelectric performance of famatinite Cu Tanishita T; Suekuni K; Nishiate H; Lee CH; Ohtaki M Phys Chem Chem Phys; 2020 Jan; 22(4):2081-2086. PubMed ID: 31904070 [TBL] [Abstract][Full Text] [Related]
38. Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in Zou C; Lei C; Zou D; Liu Y Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283714 [TBL] [Abstract][Full Text] [Related]
39. Enhanced thermoelectric performance of rough silicon nanowires. Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582 [TBL] [Abstract][Full Text] [Related]
40. Ultralow Thermal Conductivity and Extraordinary Thermoelectric Performance Realized in Codoped Cu Li D; Ming HW; Li JM; Jabar B; Xu W; Zhang J; Qin XY ACS Appl Mater Interfaces; 2020 Jan; 12(3):3886-3892. PubMed ID: 31854185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]