These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32109046)

  • 21. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels.
    Kong W; Wang C; Jia C; Kuang Y; Pastel G; Chen C; Chen G; He S; Huang H; Zhang J; Wang S; Hu L
    Adv Mater; 2018 Sep; 30(39):e1801934. PubMed ID: 30101467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures.
    Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G
    ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications.
    Dreimol CH; Guo H; Ritter M; Keplinger T; Ding Y; Günther R; Poloni E; Burgert I; Panzarasa G
    Nat Commun; 2022 Jun; 13(1):3680. PubMed ID: 35760793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ self-assembly of pulp microfibers and nanofibers into a transparent, high-performance and degradable film.
    Guo J; He J; Zhang S
    Int J Biol Macromol; 2024 Oct; 277(Pt 3):134294. PubMed ID: 39102925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processing Natural Wood into a High-Performance Flexible Pressure Sensor.
    Guan H; Meng J; Cheng Z; Wang X
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46357-46365. PubMed ID: 32967417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assembling surface mounted components on ink-jet printed double sided paper circuit board.
    Andersson HA; Manuilskiy A; Haller S; Hummelgård M; Sidén J; Hummelgård C; Olin H; Nilsson HE
    Nanotechnology; 2014 Mar; 25(9):094002. PubMed ID: 24521824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents.
    Wang M; Li R; Chen G; Zhou S; Feng X; Chen Y; He M; Liu D; Song T; Qi H
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14313-14321. PubMed ID: 30915834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites.
    Bradai H; Koubaa A; Zhang J; Demarquette NR
    Polymers (Basel); 2024 Aug; 16(17):. PubMed ID: 39274125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-Based Polymeric Substrates for Printed Hybrid Electronics.
    Luoma E; Välimäki M; Ollila J; Heikkinen K; Immonen K
    Polymers (Basel); 2022 May; 14(9):. PubMed ID: 35567032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A high-performance, all-solid-state Na
    Wang D; Zhang W; Wang J; Li X; Liu Y
    RSC Adv; 2023 May; 13(24):16610-16618. PubMed ID: 37287809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recyclable Thin-Film Soft Electronics for Smart Packaging and E-Skins.
    Reis Carneiro M; de Almeida AT; Tavakoli M; Majidi C
    Adv Sci (Weinh); 2023 Sep; 10(26):e2301673. PubMed ID: 37436091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics.
    Xu J; Guo H; Ding H; Wang Q; Tang Z; Li Z; Sun G
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7443-7452. PubMed ID: 33528998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of H
    Wu Y; Wu J; Yang F; Tang C; Huang Q
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters.
    Ebers LS; Laborie MP
    ACS Appl Bio Mater; 2020 Oct; 3(10):6897-6907. PubMed ID: 35019351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wood-Derived Carbon Materials and Light-Emitting Materials.
    Li W; Chen Z; Yu H; Li J; Liu S
    Adv Mater; 2021 Jul; 33(28):e2000596. PubMed ID: 32484297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers.
    Yao J; Chen S; Chen Y; Wang B; Pei Q; Wang H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20330-20339. PubMed ID: 28045246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-digit-micrometer thickness wood speaker.
    Gan W; Chen C; Kim HT; Lin Z; Dai J; Dong Z; Zhou Z; Ping W; He S; Xiao S; Yu M; Hu L
    Nat Commun; 2019 Nov; 10(1):5084. PubMed ID: 31704940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.