These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 32109046)
41. Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. Song J; Chen C; Yang Z; Kuang Y; Li T; Li Y; Huang H; Kierzewski I; Liu B; He S; Gao T; Yuruker SU; Gong A; Yang B; Hu L ACS Nano; 2018 Jan; 12(1):140-147. PubMed ID: 29257663 [TBL] [Abstract][Full Text] [Related]
42. A Low-Cost Strain Gauge Displacement Sensor Fabricated via Shadow Mask Printing. Yi Y; Wang B; Bermak A Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671560 [TBL] [Abstract][Full Text] [Related]
44. Potential of Commercial Wood-Based Materials as PCB Substrate. Immonen K; Lyytikäinen J; Keränen J; Eiroma K; Suhonen M; Vikman M; Leminen V; Välimäki M; Hakola L Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408011 [TBL] [Abstract][Full Text] [Related]
45. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
46. Flexible and Sensitivity-Adjustable Pressure Sensors Based on Carbonized Bacterial Nanocellulose/Wood-Derived Cellulose Nanofibril Composite Aerogels. Chen S; Chen Y; Li D; Xu Y; Xu F ACS Appl Mater Interfaces; 2021 Feb; 13(7):8754-8763. PubMed ID: 33590754 [TBL] [Abstract][Full Text] [Related]
47. Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Wang S; Jiang F; Xu X; Kuang Y; Fu K; Hitz E; Hu L Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28731208 [TBL] [Abstract][Full Text] [Related]
48. Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices. Santhiago M; Corrêa CC; Bernardes JS; Pereira MP; Oliveira LJM; Strauss M; Bufon CCB ACS Appl Mater Interfaces; 2017 Jul; 9(28):24365-24372. PubMed ID: 28650141 [TBL] [Abstract][Full Text] [Related]
49. Rendering Wood Veneers Flexible and Electrically Conductive through Delignification and Electroless Ni Plating. Chen M; Zhou W; Chen J; Xu J Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569549 [TBL] [Abstract][Full Text] [Related]
50. Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite. Han S; Chand A; Araby S; Cai R; Chen S; Kang H; Cheng R; Meng Q Nanotechnology; 2020 Feb; 31(7):075702. PubMed ID: 31639783 [TBL] [Abstract][Full Text] [Related]
51. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107 [TBL] [Abstract][Full Text] [Related]
52. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review. Agate S; Joyce M; Lucia L; Pal L Carbohydr Polym; 2018 Oct; 198():249-260. PubMed ID: 30092997 [TBL] [Abstract][Full Text] [Related]
53. Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. Ren H; Zheng L; Wang G; Gao X; Tan Z; Shan J; Cui L; Li K; Jian M; Zhu L; Zhang Y; Peng H; Wei D; Liu Z ACS Nano; 2019 May; 13(5):5541-5548. PubMed ID: 31034773 [TBL] [Abstract][Full Text] [Related]
54. Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. Yan G; He S; Chen G; Ma S; Zeng A; Chen B; Yang S; Tang X; Sun Y; Xu F; Lin L; Zeng X Nanomicro Lett; 2022 Mar; 14(1):84. PubMed ID: 35348885 [TBL] [Abstract][Full Text] [Related]
55. The influence of printed electronics on the recyclability of paper: a case study for smart envelopes in courier and postal services. Aliaga C; Zhang H; Dobon A; Hortal M; Beneventi D Waste Manag; 2015 Apr; 38():41-8. PubMed ID: 25649917 [TBL] [Abstract][Full Text] [Related]
56. Conductive Ink with Circular Life Cycle for Printed Electronics. Kwon J; DelRe C; Kang P; Hall A; Arnold D; Jayapurna I; Ma L; Michalek M; Ritchie RO; Xu T Adv Mater; 2022 Jul; 34(30):e2202177. PubMed ID: 35580071 [TBL] [Abstract][Full Text] [Related]
57. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification. Chen F; Ritter M; Xu Y; Tu K; Koch SM; Yan W; Bian H; Ding Y; Sun J; Burgert I Small; 2024 Sep; 20(38):e2311966. PubMed ID: 38770995 [TBL] [Abstract][Full Text] [Related]
58. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags. Hong H; Hu J; Yan X ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718 [TBL] [Abstract][Full Text] [Related]
59. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics. Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636 [TBL] [Abstract][Full Text] [Related]
60. Biodegradable Transparent Substrate Based on Edible Starch-Chitosan Embedded with Nature-Inspired Three-Dimensionally Interconnected Conductive Nanocomposites for Wearable Green Electronics. Miao J; Liu H; Li Y; Zhang X ACS Appl Mater Interfaces; 2018 Jul; 10(27):23037-23047. PubMed ID: 29905073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]