These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32109052)

  • 21. An Improved Free Energy Perturbation FEP+ Sampling Protocol for Flexible Ligand-Binding Domains.
    Fratev F; Sirimulla S
    Sci Rep; 2019 Nov; 9(1):16829. PubMed ID: 31728038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the effect of forcefield parameter sets on the accuracy of relative binding free energy calculations.
    Sun S; Huggins DJ
    Front Mol Biosci; 2022; 9():972162. PubMed ID: 36225254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alchemical Free Energy Methods Applied to Complexes of the First Bromodomain of BRD4.
    Guest EE; Cervantes LF; Pickett SD; Brooks CL; Hirst JD
    J Chem Inf Model; 2022 Mar; 62(6):1458-1470. PubMed ID: 35258972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate PDZ/Peptide Binding Specificity with Additive and Polarizable Free Energy Simulations.
    Panel N; Villa F; Fuentes EJ; Simonson T
    Biophys J; 2018 Mar; 114(5):1091-1102. PubMed ID: 29539396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are Explicit Solvent Models More Accurate than Implicit Solvent Models? A Case Study on the Menschutkin Reaction.
    Chen J; Shao Y; Ho J
    J Phys Chem A; 2019 Jul; 123(26):5580-5589. PubMed ID: 31244115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models.
    Steinmann SN; Sautet P; Michel C
    Phys Chem Chem Phys; 2016 Nov; 18(46):31850-31861. PubMed ID: 27841404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2004 May; 126(20):6224-5. PubMed ID: 15149207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QligFEP: an automated workflow for small molecule free energy calculations in Q.
    Jespers W; Esguerra M; Åqvist J; Gutiérrez-de-Terán H
    J Cheminform; 2019 Apr; 11(1):26. PubMed ID: 30941533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polarizable Simulations with Second order Interaction Model - force field and software for fast polarizable calculations: Parameters for small model systems and free energy calculations.
    Kaminski GA; Ponomarev SY; Liu AB
    J Chem Theory Comput; 2009 Oct; 5(11):2935-2943. PubMed ID: 20209038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computation of Absolute Hydration and Binding Free Energy with Free Energy Perturbation Distributed Replica-Exchange Molecular Dynamics (FEP/REMD).
    Jiang W; Hodoscek M; Roux B
    J Chem Theory Comput; 2009 Oct; 5(10):2583-2588. PubMed ID: 21857812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Effectiveness of Binding Free Energy Calculations.
    Mondal D; Florian J; Warshel A
    J Phys Chem B; 2019 Oct; 123(42):8910-8915. PubMed ID: 31560539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free energy perturbation (FEP)-guided scaffold hopping.
    Wu D; Zheng X; Liu R; Li Z; Jiang Z; Zhou Q; Huang Y; Wu XN; Zhang C; Huang YY; Luo HB
    Acta Pharm Sin B; 2022 Mar; 12(3):1351-1362. PubMed ID: 35530128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid alchemical free energy calculation employing a generalized born implicit solvent model.
    Ostermeir K; Zacharias M
    J Phys Chem B; 2015 Jan; 119(3):968-75. PubMed ID: 25160060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation.
    Lenselink EB; Louvel J; Forti AF; van Veldhoven JPD; de Vries H; Mulder-Krieger T; McRobb FM; Negri A; Goose J; Abel R; van Vlijmen HWT; Wang L; Harder E; Sherman W; IJzerman AP; Beuming T
    ACS Omega; 2016 Aug; 1(2):293-304. PubMed ID: 30023478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in binding free energies calculations: QM/MM-based free energy perturbation method for drug design.
    Rathore RS; Sumakanth M; Reddy MS; Reddanna P; Rao AA; Erion MD; Reddy MR
    Curr Pharm Des; 2013; 19(26):4674-86. PubMed ID: 23260025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New parameterization approaches of the LIE method to improve free energy calculations of PlmII-Inhibitors complexes.
    Valiente PA; Gil A; Batista PR; Caffarena ER; Pons T; Pascutti PG
    J Comput Chem; 2010 Nov; 31(15):2723-34. PubMed ID: 20839299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of QM/MM Methods To Obtain Ligand-Binding Free Energies.
    Olsson MA; Ryde U
    J Chem Theory Comput; 2017 May; 13(5):2245-2253. PubMed ID: 28355487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.