BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32109063)

  • 1. Effects of Layer-Charge Distribution of 2:1 Clay Minerals on Methane Hydrate Formation: A Molecular Dynamics Simulation Study.
    Li Y; Chen M; Liu C; Song H; Yuan P; Zhang B; Liu D; Du P
    Langmuir; 2020 Apr; 36(13):3323-3335. PubMed ID: 32109063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment.
    Yan KF; Li XS; Chen ZY; Xia ZM; Xu CG; Zhang Z
    Langmuir; 2016 Aug; 32(31):7975-84. PubMed ID: 27398713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite.
    Yan K; Li X; Xu C; Lv Q; Ruan X
    J Mol Model; 2014 Jun; 20(6):2311. PubMed ID: 24906646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CH
    He Z; Linga P; Jiang J
    Langmuir; 2017 Oct; 33(43):11956-11967. PubMed ID: 28991480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of marine environments on methane hydrate formation in clay nanopores: A molecular dynamics study.
    Mi F; He Z; Jiang G; Ning F
    Sci Total Environ; 2022 Dec; 852():158454. PubMed ID: 36063931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of surface property of mixed clays on methane hydrate formation in nanopores: A molecular dynamics study.
    Mi F; He Z; Zhao Y; Jiang G; Ning F
    J Colloid Interface Sci; 2022 Dec; 627():681-691. PubMed ID: 35882088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores.
    Yang G; Neretnieks I; Holmboe M
    J Chem Phys; 2017 Aug; 147(8):084705. PubMed ID: 28863548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics modeling of carbon dioxide, water and natural organic matter in Na-hectorite.
    Yazaydin AO; Bowers GM; Kirkpatrick RJ
    Phys Chem Chem Phys; 2015 Sep; 17(36):23356-67. PubMed ID: 26286865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration of methane intercalated in Na-smectites with distinct layer charge: insights from molecular simulations.
    Zhou Q; Lu X; Liu X; Zhang L; He H; Zhu J; Yuan P
    J Colloid Interface Sci; 2011 Mar; 355(1):237-42. PubMed ID: 21193200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.
    Zhang Z; Guo GJ
    Phys Chem Chem Phys; 2017 Jul; 19(29):19496-19505. PubMed ID: 28719672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of CH
    He Z; Zhang K; Jiang J
    J Phys Chem Lett; 2019 Nov; 10(22):7002-7008. PubMed ID: 31657572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.
    Greathouse JA; Cygan RT
    Environ Sci Technol; 2006 Jun; 40(12):3865-71. PubMed ID: 16830554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of CO2 and mixed methane/CO2 hydrates intercalated in smectites by means of atomistic calculations.
    Martos-Villa R; Mata MP; Sainz-Díaz CI
    J Mol Graph Model; 2014 Apr; 49():80-90. PubMed ID: 24569124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Electric Field on Gas Hydrate Nucleation Kinetics: Evidence for the Enhanced Kinetics of Hydrate Nucleation by Negatively Charged Clay Surfaces.
    Park T; Kwon TH
    Environ Sci Technol; 2018 Mar; 52(5):3267-3274. PubMed ID: 29397706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration of a synthetic clay with tetrahedral charges: a multidisciplinary experimental and numerical study.
    Rinnert E; Carteret C; Humbert B; Fragneto-Cusani G; Ramsay JD; Delville A; Robert JL; Bihannic I; Pelletier M; Michot LJ
    J Phys Chem B; 2005 Dec; 109(49):23745-59. PubMed ID: 16375356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface.
    Kyung D; Lim HK; Kim H; Lee W
    Environ Sci Technol; 2015 Jan; 49(2):1197-205. PubMed ID: 25532462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.
    Schumann D; Hartman H; Eberl DD; Sears SK; Hesse R; Vali H
    Astrobiology; 2012 Jun; 12(6):549-61. PubMed ID: 22794298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.
    Sujith KS; Ramachandran CN
    Phys Chem Chem Phys; 2016 Feb; 18(5):3746-54. PubMed ID: 26762545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface geochemistry of the clay minerals.
    Sposito G; Skipper NT; Sutton R; Park S; Soper AK; Greathouse JA
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3358-64. PubMed ID: 10097044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Layer Charge on CO
    Rao Q; Leng Y
    Langmuir; 2016 Nov; 32(44):11366-11374. PubMed ID: 27741570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.