These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32109082)

  • 21. Effects of bisphosphonate ligands and PEGylation on targeted delivery of gold nanoparticles for contrast-enhanced radiographic detection of breast microcalcifications.
    Cole LE; McGinnity TL; Irimata LE; Vargo-Gogola T; Roeder RK
    Acta Biomater; 2018 Dec; 82():122-132. PubMed ID: 30316022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A convenient phase transfer protocol to functionalize gold nanoparticles with short alkylamine ligands.
    Yang G; Chang WS; Hallinan DT
    J Colloid Interface Sci; 2015 Dec; 460():164-72. PubMed ID: 26319333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and orientation effects in the coalescence of Au clusters.
    Nelli D; Rossi G; Wang Z; Palmer RE; Ferrando R
    Nanoscale; 2020 Apr; 12(14):7688-7699. PubMed ID: 32211622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticle ζ -potentials.
    Doane TL; Chuang CH; Hill RJ; Burda C
    Acc Chem Res; 2012 Mar; 45(3):317-26. PubMed ID: 22074988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approach and Coalescence of Gold Nanoparticles Driven by Surface Thermodynamic Fluctuations and Atomic Interaction Forces.
    Wang J; Chen S; Cui K; Li D; Chen D
    ACS Nano; 2016 Feb; 10(2):2893-902. PubMed ID: 26756675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study.
    Samsonov VM; Talyzin IV; Puytov VV; Vasilyev SA; Romanov AA; Alymov MI
    J Chem Phys; 2022 Jun; 156(21):214302. PubMed ID: 35676151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?
    Park S; Woodhall J; Ma G; Veinot JG; Boxall AB
    Environ Toxicol Chem; 2015 Apr; 34(4):850-9. PubMed ID: 25556899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles.
    Li L; Li X; Duan Z; Meyer RJ; Carr R; Raman S; Koziol L; Henkelman G
    Nanoscale; 2019 May; 11(21):10524-10535. PubMed ID: 31116210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociation of hydrophobic and charged nano particles in aqueous guanidinium chloride and urea solutions: a molecular dynamics study.
    Li W; Mu Y
    Nanoscale; 2012 Feb; 4(4):1154-9. PubMed ID: 22105862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles.
    Hung YL; Hsiung TM; Chen YY; Huang CC
    Talanta; 2010 Jul; 82(2):516-22. PubMed ID: 20602929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The story of a monodisperse gold nanoparticle: Au25L18.
    Parker JF; Fields-Zinna CA; Murray RW
    Acc Chem Res; 2010 Sep; 43(9):1289-96. PubMed ID: 20597498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning cellular response to nanoparticles via surface chemistry and aggregation.
    Yang JA; Lohse SE; Murphy CJ
    Small; 2014 Apr; 10(8):1642-51. PubMed ID: 24323847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bulky adamantanethiolate and cyclohexanethiolate ligands favor smaller gold nanoparticles with altered discrete sizes.
    Krommenhoek PJ; Wang J; Hentz N; Johnston-Peck AC; Kozek KA; Kalyuzhny G; Tracy JB
    ACS Nano; 2012 Jun; 6(6):4903-11. PubMed ID: 22702463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precise manipulation of biophysical particle parameters enables control of proinflammatory cytokine production in presence of TLR 3 and 4 ligands.
    Kakizawa Y; Lee JS; Bell B; Fahmy TM
    Acta Biomater; 2017 Jul; 57():136-145. PubMed ID: 28069499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of amphiphilic block copolymers in an aqueous solution: direct imaging of micelle formation and nanoparticle encapsulation.
    Li C; Tho CC; Galaktionova D; Chen X; Král P; Mirsaidov U
    Nanoscale; 2019 Jan; 11(5):2299-2305. PubMed ID: 30662983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the melting point depression, coalescence, and chemical ordering of bimetallic nanoparticles: the miscible Ni-Pt system.
    Toulkeridou E; Kioseoglou J; Grammatikopoulos P
    Nanoscale Adv; 2022 Nov; 4(22):4819-4828. PubMed ID: 36381515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanoparticles stabilized by thioether dendrimers.
    Hermes JP; Sander F; Peterle T; Urbani R; Pfohl T; Thompson D; Mayor M
    Chemistry; 2011 Nov; 17(48):13473-81. PubMed ID: 22028306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.