These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32109118)

  • 1. Strong Coupling of Two Individually Controlled Atoms via a Nanophotonic Cavity.
    Samutpraphoot P; Đorđević T; Ocola PL; Bernien H; Senko C; Vuletić V; Lukin MD
    Phys Rev Lett; 2020 Feb; 124(6):063602. PubMed ID: 32109118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguide-coupled single collective excitation of atomic arrays.
    Corzo NV; Raskop J; Chandra A; Sheremet AS; Gouraud B; Laurat J
    Nature; 2019 Feb; 566(7744):359-362. PubMed ID: 30718773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity quantum electrodynamics with atom-like mirrors.
    Mirhosseini M; Kim E; Zhang X; Sipahigil A; Dieterle PB; Keller AJ; Asenjo-Garcia A; Chang DE; Painter O
    Nature; 2019 May; 569(7758):692-697. PubMed ID: 31092923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling Single Atoms to a Nanophotonic Whispering-Gallery-Mode Resonator via Optical Guiding.
    Zhou X; Tamura H; Chang TH; Hung CL
    Phys Rev Lett; 2023 Mar; 130(10):103601. PubMed ID: 36962011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lasing by driven atoms-cavity system in collective strong coupling regime.
    Sawant R; Rangwala SA
    Sci Rep; 2017 Sep; 7(1):11432. PubMed ID: 28900221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring dynamical phase transitions with cold atoms in an optical  cavity.
    Muniz JA; Barberena D; Lewis-Swan RJ; Young DJ; Cline JRK; Rey AM; Thompson JK
    Nature; 2020 Apr; 580(7805):602-607. PubMed ID: 32350478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling a single trapped atom to a nanoscale optical cavity.
    Thompson JD; Tiecke TG; de Leon NP; Feist J; Akimov AV; Gullans M; Zibrov AS; Vuletić V; Lukin MD
    Science; 2013 Jun; 340(6137):1202-5. PubMed ID: 23618764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging and Localizing Individual Atoms Interfaced with a Nanophotonic Waveguide.
    Meng Y; Liedl C; Pucher S; Rauschenbeutel A; Schneeweiss P
    Phys Rev Lett; 2020 Jul; 125(5):053603. PubMed ID: 32794877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superradiant and Subradiant Cavity Scattering by Atom Arrays.
    Yan Z; Ho J; Lu YH; Masson SJ; Asenjo-Garcia A; Stamper-Kurn DM
    Phys Rev Lett; 2023 Dec; 131(25):253603. PubMed ID: 38181363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon-mediated interactions between quantum emitters in a diamond nanocavity.
    Evans RE; Bhaskar MK; Sukachev DD; Nguyen CT; Sipahigil A; Burek MJ; Machielse B; Zhang GH; Zibrov AS; Bielejec E; Park H; Lončar M; Lukin MD
    Science; 2018 Nov; 362(6415):662-665. PubMed ID: 30237247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning out disorder-induced localization in nanophotonic cavity arrays.
    Sokolov S; Lian J; Yüce E; Combrié S; De Rossi A; Mosk AP
    Opt Express; 2017 Mar; 25(5):4598-4606. PubMed ID: 28380731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity.
    Greve GP; Luo C; Wu B; Thompson JK
    Nature; 2022 Oct; 610(7932):472-477. PubMed ID: 36261551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering random spin models with atoms in a high-finesse cavity.
    Sauerwein N; Orsi F; Uhrich P; Bandyopadhyay S; Mattiotti F; Cantat-Moltrecht T; Pupillo G; Hauke P; Brantut JP
    Nat Phys; 2023; 19(8):1128-1134. PubMed ID: 37575364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Observation of Single Atoms Trapped and Interfaced to a Nanofiber Cavity.
    Nayak KP; Wang J; Keloth J
    Phys Rev Lett; 2019 Nov; 123(21):213602. PubMed ID: 31809149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics.
    Kato S; Német N; Senga K; Mizukami S; Huang X; Parkins S; Aoki T
    Nat Commun; 2019 Mar; 10(1):1160. PubMed ID: 30858381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressing normal mode excitation by quantum interference in a cavity-atom system.
    Zhang J; Hernandez G; Zhu Y
    Opt Express; 2008 May; 16(11):7860-8. PubMed ID: 18545496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supermode-density-wave-polariton condensation with a Bose-Einstein condensate in a multimode cavity.
    Kollár AJ; Papageorge AT; Vaidya VD; Guo Y; Keeling J; Lev BL
    Nat Commun; 2017 Feb; 8():14386. PubMed ID: 28211455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A subradiant optical mirror formed by a single structured atomic layer.
    Rui J; Wei D; Rubio-Abadal A; Hollerith S; Zeiher J; Stamper-Kurn DM; Gross C; Bloch I
    Nature; 2020 Jul; 583(7816):369-374. PubMed ID: 32669699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.