These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 32109252)

  • 21. A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: a proof of concept study.
    Adamovich SV; August K; Merians A; Tunik E
    Restor Neurol Neurosci; 2009; 27(3):209-23. PubMed ID: 19531876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Talk to the virtual hands: self-animated avatars improve communication in head-mounted display virtual environments.
    Dodds TJ; Mohler BJ; Bülthoff HH
    PLoS One; 2011; 6(10):e25759. PubMed ID: 22022442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mere observation of body discontinuity affects perceived ownership and vicarious agency over a virtual hand.
    Tieri G; Tidoni E; Pavone EF; Aglioti SM
    Exp Brain Res; 2015 Apr; 233(4):1247-59. PubMed ID: 25618006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction.
    Wright RL; Elliott MT
    Front Hum Neurosci; 2014; 8():724. PubMed ID: 25309397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Influence of Avatar Representation on Interpersonal Communication in Virtual Social Environments.
    Aseeri S; Interrante V
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2608-2617. PubMed ID: 33750710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of an overweight body representation in virtual reality on locomotion in a motor imagery task.
    Dupraz L; Barra J; Beaudoin M; Guerraz M
    Psychol Res; 2023 Mar; 87(2):462-473. PubMed ID: 35338404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the Relationship Between Attribute Discrepancy and Avatar Embodiment in Immersive Social Virtual Reality.
    DeVeaux C; Han E; Landay JA; Bailenson JN
    Cyberpsychol Behav Soc Netw; 2023 Oct; ():. PubMed ID: 37851990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How visual information influences coordination dynamics when following the leader.
    Meerhoff LA; De Poel HJ; Button C
    Neurosci Lett; 2014 Oct; 582():12-5. PubMed ID: 25153514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complementary spatial and timing control in rhythmic arm movements.
    Nickl RW; Ankarali MM; Cowan NJ
    J Neurophysiol; 2019 Apr; 121(4):1543-1560. PubMed ID: 30811263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Body Size Match to an Avatar on the Body Ownership Illusion and User's Subjective Experience.
    Kim SY; Park H; Jung M; Kim KK
    Cyberpsychol Behav Soc Netw; 2020 Apr; 23(4):234-241. PubMed ID: 32074457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Personalized Avatars and Motion Synchrony on Embodiment and Users' Subjective Experience: Empirical Study.
    Jung M; Sim S; Kim J; Kim K
    JMIR Serious Games; 2022 Nov; 10(4):e40119. PubMed ID: 36346658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pilot study for assessing the behaviors of patients with schizophrenia towards a virtual avatar.
    Ku J; Jang HJ; Kim KU; Park SH; Kim JJ; Kim CH; Nam SW; Kim IY; Kim SI
    Cyberpsychol Behav; 2006 Oct; 9(5):531-9. PubMed ID: 17034319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-sensory display of self-avatar's physiological state: virtual breathing and heart beating can increase sensation of effort in VR.
    Moullec Y; Saint-Aubert J; Manson J; Cogne M; Lecuyer A
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3596-3606. PubMed ID: 36048993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immersive Virtual Reality Avatars for Embodiment Illusions in People With Mild to Borderline Intellectual Disability: User-Centered Development and Feasibility Study.
    Langener S; Klaassen R; VanDerNagel J; Heylen D
    JMIR Serious Games; 2022 Dec; 10(4):e39966. PubMed ID: 36476721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Type of auditory cues and apparatus influence how healthy young adults integrate sounds for dynamic balance.
    Arie L; Roginska A; Wu Y; Lin D; Olsen AF; Harel D; Lubetzky AV
    Exp Brain Res; 2024 May; 242(5):1225-1235. PubMed ID: 38526742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment.
    Limanowski J; Kirilina E; Blankenburg F
    Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Error, rather than its probability, elicits specific electrocortical signatures: a combined EEG-immersive virtual reality study of action observation.
    Pezzetta R; Nicolardi V; Tidoni E; Aglioti SM
    J Neurophysiol; 2018 Sep; 120(3):1107-1118. PubMed ID: 29873613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Embodiment of an Older Avatar in a Virtual Reality Setting Impacts the Social Motivation of Young Adults.
    Vahle N; Tomasik MJ
    Exp Aging Res; 2022; 48(2):164-176. PubMed ID: 34182895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory cueing facilitates temporospatial accuracy of sequential movements.
    Malouka S; Loria T; Crainic V; Thaut MH; Tremblay L
    Hum Mov Sci; 2023 Jun; 89():103087. PubMed ID: 37060619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchronization dynamics modulates stride-to-stride fluctuations when walking to an invariant but not to a fractal-like stimulus.
    Vaz JR; Groff BR; Rowen DA; Knarr BA; Stergiou N
    Neurosci Lett; 2019 Jun; 704():28-35. PubMed ID: 30922850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.