These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32109395)
1. Shared Mutations in a Novel Glutaredoxin Repressor of Multicellular Trichome Fate Underlie Parallel Evolution of Antirrhinum Species. Tan Y; Barnbrook M; Wilson Y; Molnár A; Bukys A; Hudson A Curr Biol; 2020 Apr; 30(8):1357-1366.e4. PubMed ID: 32109395 [TBL] [Abstract][Full Text] [Related]
2. Trichomes: different regulatory networks lead to convergent structures. Serna L; Martin C Trends Plant Sci; 2006 Jun; 11(6):274-80. PubMed ID: 16697247 [TBL] [Abstract][Full Text] [Related]
3. A phylogeny of Antirrhinum reveals parallel evolution of alpine morphology. Durán-Castillo M; Hudson A; Wilson Y; Field DL; Twyford AD New Phytol; 2022 Feb; 233(3):1426-1439. PubMed ID: 34170548 [TBL] [Abstract][Full Text] [Related]
4. Recent parallel speciation in Antirrhinum involved complex haplotypes and multiple adaptive characters. Barnbrook M; Durán-Castillo M; Critchley J; Wilson Y; Twyford A; Hudson A Mol Ecol; 2023 Oct; 32(19):5305-5322. PubMed ID: 37602497 [TBL] [Abstract][Full Text] [Related]
5. Trichome structure and evolution in Neotropical lianas. Nogueira A; Ottra JH; Guimarães E; Machado SR; Lohmann LG Ann Bot; 2013 Nov; 112(7):1331-50. PubMed ID: 24081281 [TBL] [Abstract][Full Text] [Related]
6. Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato. Chang J; Yu T; Yang Q; Li C; Xiong C; Gao S; Xie Q; Zheng F; Li H; Tian Z; Yang C; Ye Z Plant J; 2018 Oct; 96(1):90-102. PubMed ID: 29981215 [TBL] [Abstract][Full Text] [Related]
7. Differentiation in the genetic basis of stem trichome development between cultivated tetraploid cotton species. Yuan R; Cao Y; Li T; Yang F; Yu L; Qin Y; Du X; Liu F; Ding M; Jiang Y; Zhang H; Paterson AH; Rong J BMC Plant Biol; 2021 Feb; 21(1):115. PubMed ID: 33632125 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato. Chang J; Xu Z; Li M; Yang M; Qin H; Yang J; Wu S PLoS Genet; 2019 Oct; 15(10):e1008438. PubMed ID: 31584936 [TBL] [Abstract][Full Text] [Related]
9. A novel regulatory complex mediated by Lanata (Ln) controls multicellular trichome formation in tomato. Xie Q; Xiong C; Yang Q; Zheng F; Larkin RM; Zhang J; Wang T; Zhang Y; Ouyang B; Lu Y; Ye J; Ye Z; Yang C New Phytol; 2022 Dec; 236(6):2294-2310. PubMed ID: 36102042 [TBL] [Abstract][Full Text] [Related]
10. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events. Gilding EK; Marks MD Plant J; 2010 Oct; 64(2):304-17. PubMed ID: 21070410 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiling reveals key genes in regulation of the tepal trichome development in Lilium pumilum D.C. Xin Y; Pan W; Chen X; Liu Y; Zhang M; Chen X; Yang F; Li J; Wu J; Du Y; Zhang X Plant Cell Rep; 2021 Oct; 40(10):1889-1906. PubMed ID: 34259890 [TBL] [Abstract][Full Text] [Related]
13. Molecular Mechanisms of Plant Trichome Development. Han G; Li Y; Yang Z; Wang C; Zhang Y; Wang B Front Plant Sci; 2022; 13():910228. PubMed ID: 35720574 [TBL] [Abstract][Full Text] [Related]
14. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativus. Zhao JL; Pan JS; Guan Y; Zhang WW; Bie BB; Wang YL; He HL; Lian HL; Cai R J Integr Plant Biol; 2015 Nov; 57(11):925-35. PubMed ID: 25735194 [TBL] [Abstract][Full Text] [Related]
15. Clade-specific positive selection on a developmental gene: BRANCHLESS TRICHOME and the evolution of stellate trichomes in Physaria (Brassicaceae). Mazie AR; Baum DA Mol Phylogenet Evol; 2016 Jul; 100():31-40. PubMed ID: 27015897 [TBL] [Abstract][Full Text] [Related]
16. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. Doroshkov AV; Konstantinov DK; Afonnikov DA; Gunbin KV BMC Plant Biol; 2019 Feb; 19(Suppl 1):53. PubMed ID: 30813891 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis sativus. Zhao JL; Wang YL; Yao DQ; Zhu WY; Chen L; He HL; Pan JS; Cai R Mol Genet Genomics; 2015 Oct; 290(5):2007-18. PubMed ID: 25952908 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptomics analysis revealing flower trichome development during flower development in two Lonicera japonica Thunb. cultivars using RNA-seq. Li J; Ye C; Chang C BMC Plant Biol; 2020 Jul; 20(1):341. PubMed ID: 32680457 [TBL] [Abstract][Full Text] [Related]
19. Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Wang YL; Nie JT; Chen HM; Guo CL; Pan J; He HL; Pan JS; Cai R Theor Appl Genet; 2016 Feb; 129(2):305-16. PubMed ID: 26518574 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptome analysis to identify putative genes related to trichome development in Ocimum species. Chandra M; Kushwaha S; Sangwan NS Mol Biol Rep; 2020 Sep; 47(9):6587-6598. PubMed ID: 32860161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]