BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 32109415)

  • 1. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging.
    Xiao H; Jedrychowski MP; Schweppe DK; Huttlin EL; Yu Q; Heppner DE; Li J; Long J; Mills EL; Szpyt J; He Z; Du G; Garrity R; Reddy A; Vaites LP; Paulo JA; Zhang T; Gray NS; Gygi SP; Chouchani ET
    Cell; 2020 Mar; 180(5):968-983.e24. PubMed ID: 32109415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanded bioinformatic analysis of Oximouse dataset reveals key putative processes involved in brain aging and cognitive decline.
    Urrutia PJ; Bórquez DA
    Free Radic Biol Med; 2023 Oct; 207():200-211. PubMed ID: 37473875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age.
    Stanhope SC; Brandwine-Shemmer T; Blum HR; Doud EH; Jannasch A; Mosley AL; Minke B; Weake VM
    Redox Biol; 2023 Jul; 63():102723. PubMed ID: 37146512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster.
    Menger KE; James AM; Cochemé HM; Harbour ME; Chouchani ET; Ding S; Fearnley IM; Partridge L; Murphy MP
    Cell Rep; 2015 Jun; 11(12):1856-65. PubMed ID: 26095360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of reactive oxygen species-mediated signaling in aging.
    Labunskyy VM; Gladyshev VN
    Antioxid Redox Signal; 2013 Oct; 19(12):1362-72. PubMed ID: 22901002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox responses are preserved across muscle fibres with differential susceptibility to aging.
    Smith NT; Soriano-Arroquia A; Goljanek-Whysall K; Jackson MJ; McDonagh B
    J Proteomics; 2018 Apr; 177():112-123. PubMed ID: 29438851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.
    McDonagh B; Sakellariou GK; Smith NT; Brownridge P; Jackson MJ
    J Proteome Res; 2014 Nov; 13(11):5008-21. PubMed ID: 25181601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion.
    Sonego G; Abonnenc M; Tissot JD; Prudent M; Lion N
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and aging.
    Dröge W
    Adv Exp Med Biol; 2003; 543():191-200. PubMed ID: 14713123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress.
    van der Reest J; Lilla S; Zheng L; Zanivan S; Gottlieb E
    Nat Commun; 2018 Apr; 9(1):1581. PubMed ID: 29679077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of redox proteomics to skeletal muscle aging and exercise.
    McDonagh B; Sakellariou GK; Jackson MJ
    Biochem Soc Trans; 2014 Aug; 42(4):965-70. PubMed ID: 25109987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes.
    Held JM; Gibson BW
    Mol Cell Proteomics; 2012 Apr; 11(4):R111.013037. PubMed ID: 22159599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox metabolism: ROS as specific molecular regulators of cell signaling and function.
    Lennicke C; Cochemé HM
    Mol Cell; 2021 Sep; 81(18):3691-3707. PubMed ID: 34547234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Probes for Redox Signaling and Oxidative Stress.
    Abo M; Weerapana E
    Antioxid Redox Signal; 2019 Apr; 30(10):1369-1386. PubMed ID: 29132214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.