These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 32109415)

  • 21. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural insights into redox-active cysteine residues of the Src family kinases.
    Heppner DE
    Redox Biol; 2021 May; 41():101934. PubMed ID: 33765616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins.
    Boronat S; Domènech A; Hidalgo E
    Antioxid Redox Signal; 2017 Mar; 26(7):329-344. PubMed ID: 27089838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteine Proteome Reveals Response to Endogenous Oxidative Stress in
    Hamitouche F; Armengaud J; Dedieu L; Duport C
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of microbial induced redox-dependent intestinal signaling.
    Matthews JD; Reedy AR; Wu H; Hinrichs BH; Darby TM; Addis C; Robinson BS; Go YM; Jones DP; Jones RM; Neish AS
    Redox Biol; 2019 Jan; 20():526-532. PubMed ID: 30508697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic Methods to Evaluate NOX-Mediated Redox Signaling.
    Dustin CM; Hristova M; Schiffers C; van der Vliet A
    Methods Mol Biol; 2019; 1982():497-515. PubMed ID: 31172492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox proteomics.
    Butterfield DA; Dalle-Donne I
    Antioxid Redox Signal; 2012 Dec; 17(11):1487-9. PubMed ID: 22671972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Both ROSy and Grim: The Landscape of Protein Redox during Aging.
    Chen YR; Jarosz DF
    Cell Metab; 2020 Apr; 31(4):662-663. PubMed ID: 32268111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells.
    Kisty EA; Falco JA; Weerapana E
    Cell Chem Biol; 2023 Mar; 30(3):321-336.e6. PubMed ID: 36889310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global redox proteome and phosphoproteome analysis reveals redox switch in Akt.
    Su Z; Burchfield JG; Yang P; Humphrey SJ; Yang G; Francis D; Yasmin S; Shin SY; Norris DM; Kearney AL; Astore MA; Scavuzzo J; Fisher-Wellman KH; Wang QP; Parker BL; Neely GG; Vafaee F; Chiu J; Yeo R; Hogg PJ; Fazakerley DJ; Nguyen LK; Kuyucak S; James DE
    Nat Commun; 2019 Dec; 10(1):5486. PubMed ID: 31792197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next.
    Meyer AJ; Dreyer A; Ugalde JM; Feitosa-Araujo E; Dietz KJ; Schwarzländer M
    Biol Chem; 2021 Feb; 402(3):399-423. PubMed ID: 33544501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Tambor V; Kondelova A; Bartek J; Hodny Z
    Redox Biol; 2019 Jun; 24():101227. PubMed ID: 31154163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks?
    Mukherjee S
    Plant Signal Behav; 2021 Jan; 16(1):1831792. PubMed ID: 33300450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.