These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 32109415)

  • 41. Redox regulation of cysteine-dependent enzymes.
    Guttmann RP
    J Anim Sci; 2010 Apr; 88(4):1297-306. PubMed ID: 19820057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Redox signalling and ageing: insights from Drosophila.
    Lennicke C; Cochemé HM
    Biochem Soc Trans; 2020 Apr; 48(2):367-377. PubMed ID: 32196546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversible oxidation controls the activity and oligomeric state of the mammalian phosphoglycolate phosphatase AUM.
    Seifried A; Bergeron A; Boivin B; Gohla A
    Free Radic Biol Med; 2016 Aug; 97():75-84. PubMed ID: 27179418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteome-Wide Survey of Cysteine Oxidation by Using a Norbornene Probe.
    Alcock LJ; Langini M; Stühler K; Remke M; Perkins MV; Bernardes GJL; Chalker JM
    Chembiochem; 2020 May; 21(9):1329-1334. PubMed ID: 31802583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation-induced damage.
    Chang RL; Stanley JA; Robinson MC; Sher JW; Li Z; Chan YA; Omdahl AR; Wattiez R; Godzik A; Matallana-Surget S
    EMBO J; 2020 Dec; 39(23):e104523. PubMed ID: 33073387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal.
    Takata T; Araki S; Tsuchiya Y; Watanabe Y
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228180
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Orchestrating redox signaling networks through regulatory cysteine switches.
    Paulsen CE; Carroll KS
    ACS Chem Biol; 2010 Jan; 5(1):47-62. PubMed ID: 19957967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redox control of senescence and age-related disease.
    Chandrasekaran A; Idelchik MDPS; Melendez JA
    Redox Biol; 2017 Apr; 11():91-102. PubMed ID: 27889642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The cysteine proteome.
    Go YM; Chandler JD; Jones DP
    Free Radic Biol Med; 2015 Jul; 84():227-245. PubMed ID: 25843657
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes.
    Gómez-Serrano M; Camafeita E; López JA; Rubio MA; Bretón I; García-Consuegra I; García-Santos E; Lago J; Sánchez-Pernaute A; Torres A; Vázquez J; Peral B
    Redox Biol; 2017 Apr; 11():415-428. PubMed ID: 28064117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Redox Signaling and Reactive Sulfur Species to Regulate Electrophilic Stress].
    Kanda H; Kumagai Y
    Yakugaku Zasshi; 2020; 140(9):1119-1128. PubMed ID: 32879244
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P; Chan P
    Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein.
    Camporeale G; Lorenzo JR; Thomas MG; Salvatierra E; Borkosky SS; Risso MG; Sánchez IE; de Prat Gay G; Alonso LG
    Redox Biol; 2017 Apr; 11():38-50. PubMed ID: 27863297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The redox regulation of thiol dependent signaling pathways in cancer.
    Giles GI
    Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system.
    Chung HS; Wang SB; Venkatraman V; Murray CI; Van Eyk JE
    Circ Res; 2013 Jan; 112(2):382-92. PubMed ID: 23329793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modification of cysteine residues by cyclopentenone prostaglandins: interplay with redox regulation of protein function.
    Oeste CL; Pérez-Sala D
    Mass Spectrom Rev; 2014; 33(2):110-25. PubMed ID: 23818260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redox Proteomes in Human Physiology and Disease Mechanisms.
    Mannaa A; Hanisch FG
    J Proteome Res; 2020 Jan; 19(1):1-17. PubMed ID: 31647248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation.
    Brenig K; Grube L; Schwarzländer M; Köhrer K; Stühler K; Poschmann G
    J Proteome Res; 2020 May; 19(5):1923-1940. PubMed ID: 32202429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.