BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32109470)

  • 1. Chelator-mediated biomimetic degradation of cellulose and chitin.
    Liu J; Zhu Y; Wang C; Goodell B; Esker AR
    Int J Biol Macromol; 2020 Jun; 153():433-440. PubMed ID: 32109470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi.
    Goodell B; Zhu Y; Kim S; Kafle K; Eastwood D; Daniel G; Jellison J; Yoshida M; Groom L; Pingali SV; O'Neill H
    Biotechnol Biofuels; 2017; 10():179. PubMed ID: 28702084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall
    Zhu Y; Plaza N; Kojima Y; Yoshida M; Zhang J; Jellison J; Pingali SV; O'Neill H; Goodell B
    Front Microbiol; 2020; 11():1389. PubMed ID: 32670241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose.
    Mohan T; Kargl R; Doliška A; Ehmann HM; Ribitsch V; Stana-Kleinschek K
    Carbohydr Polym; 2013 Mar; 93(1):191-8. PubMed ID: 23465919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitinase activity on amorphous chitin thin films: a quartz crystal microbalance with dissipation monitoring and atomic force microscopy study.
    Wang C; Kittle JD; Qian C; Roman M; Esker AR
    Biomacromolecules; 2013 Aug; 14(8):2622-8. PubMed ID: 23822524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring.
    Suchy M; Linder MB; Tammelin T; Campbell JM; Vuorinen T; Kontturi E
    Langmuir; 2011 Jul; 27(14):8819-28. PubMed ID: 21699170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards biomimicking wood: fabricated free-standing films of Nanocellulose, Lignin, and a synthetic polycation.
    Pillai K; Navarro Arzate F; Zhang W; Renneckar S
    J Vis Exp; 2014 Jun; (88):. PubMed ID: 24961302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose.
    Xu G; Goodell B
    J Biotechnol; 2001 Apr; 87(1):43-57. PubMed ID: 11267698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystalline chitin thin films.
    Wang C; Esker AR
    Carbohydr Polym; 2014 Feb; 102():151-8. PubMed ID: 24507267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring.
    Kittle JD; Du X; Jiang F; Qian C; Heinze T; Roman M; Esker AR
    Biomacromolecules; 2011 Aug; 12(8):2881-7. PubMed ID: 21574564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin chitin films for nanocomposites and biosensors.
    Kittle JD; Wang C; Qian C; Zhang Y; Zhang M; Roman M; Morris JR; Moore RB; Esker AR
    Biomacromolecules; 2012 Mar; 13(3):714-8. PubMed ID: 22263611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of model cellulose films by cellulosomes: Extension of quartz crystal microbalance technique to multienzymatic complexes.
    Zhou S; Li HF; Garlapalli R; Nokes SE; Flythe M; Rankin SE; Knutson BL
    J Biotechnol; 2017 Jan; 241():42-49. PubMed ID: 27838255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activities of Family 18 Chitinases on Amorphous Regenerated Chitin Thin Films and Dissolved Chitin Oligosaccharides: Comparison with Family 19 Chitinases.
    Yu G; Liu G; Liu T; Fink EH; Esker AR
    Biomacromolecules; 2023 Feb; 24(2):566-575. PubMed ID: 36715568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between cellulose thin film supramolecular structures and interactions with water.
    Tammelin T; Abburi R; Gestranius M; Laine C; Setälä H; Österberg M
    Soft Matter; 2015 Jun; 11(21):4273-82. PubMed ID: 25903294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.
    Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ
    Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study.
    Turon X; Rojas OJ; Deinhammer RS
    Langmuir; 2008 Apr; 24(8):3880-7. PubMed ID: 18324851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of bacteria and polycations on model surfaces of cellulose, hemicellulose and wood extractives studied by QCM-D.
    Leino T; Raulio M; Salkinoja-Salonen M; Stenius P; Laine J
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):131-9. PubMed ID: 21507615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose.
    Hatton FL; Ruda M; Lansalot M; D'Agosto F; Malmström E; Carlmark A
    Biomacromolecules; 2016 Apr; 17(4):1414-24. PubMed ID: 26913868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases.
    Josefsson P; Henriksson G; Wågberg L
    Biomacromolecules; 2008 Jan; 9(1):249-54. PubMed ID: 18163575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.