These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32109599)

  • 1. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (I): Methodology.
    Yang T; Wu Z; Chen H; Zhu Y; Li L
    Acta Biomater; 2020 Apr; 107():204-217. PubMed ID: 32109599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis.
    Chen H; Yang T; Wu Z; Deng Z; Zhu Y; Li L
    Acta Biomater; 2020 Apr; 107():218-231. PubMed ID: 32151699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanics of Sea Urchin spines.
    Tsafnat N; Fitz Gerald JD; Le HN; Stachurski ZH
    PLoS One; 2012; 7(9):e44140. PubMed ID: 22984468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength, elasticity and the limits of energy dissipation in two related sea urchin spines with biomimetic potential.
    Lauer C; Sillmann K; Haußmann S; Nickel KG
    Bioinspir Biomim; 2018 Dec; 14(1):016018. PubMed ID: 30523969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength-size relationships in two porous biological materials.
    Lauer C; Schmier S; Speck T; Nickel KG
    Acta Biomater; 2018 Sep; 77():322-332. PubMed ID: 29981496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ordered stereom structure in sea urchin tubercles: High capability for energy dissipation.
    Ji HM; Qi QJ; Liang SM; Yu H; Li XW
    Acta Biomater; 2022 Sep; 150():310-323. PubMed ID: 35907559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tropomyosin induces the synthesis of magnesian calcite in sea urchin spines.
    Kato Y; Ha W; Zheng Z; Negishi L; Kawano J; Kurita Y; Kurumizaka H; Suzuki M
    J Struct Biol; 2024 Jun; 216(2):108074. PubMed ID: 38432597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, composition and mechanical relations to function in sea urchin spine.
    Moureaux C; Pérez-Huerta A; Compère P; Zhu W; Leloup T; Cusack M; Dubois P
    J Struct Biol; 2010 Apr; 170(1):41-9. PubMed ID: 20064619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth.
    Veis A
    Front Biosci (Landmark Ed); 2011 Jun; 16(7):2540-60. PubMed ID: 21622194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair.
    Cao L; Li X; Zhou X; Li Y; Vecchio KS; Yang L; Cui W; Yang R; Zhu Y; Guo Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9862-9870. PubMed ID: 28252933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and micromechanics of the heart urchin test from X-ray tomography.
    Müter D; Sørensen HO; Oddershede J; Dalby KN; Stipp SLS
    Acta Biomater; 2015 Sep; 23():21-26. PubMed ID: 25983316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid.
    Yang T; Jia Z; Wu Z; Chen H; Deng Z; Chen L; Zhu Y; Li L
    Nat Commun; 2022 Oct; 13(1):6083. PubMed ID: 36241635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The attachment of collagenous ligament to stereom in primary spines of the sea-urchin, Eucidaris tribuloides.
    Smith DS; Del Castillo J; Morales M; Luke B
    Tissue Cell; 1990; 22(2):157-76. PubMed ID: 2368092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants.
    Vecchio KS; Zhang X; Massie JB; Wang M; Kim CW
    Acta Biomater; 2007 Sep; 3(5):785-93. PubMed ID: 17512809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus.
    Livingston BT; Killian CE; Wilt F; Cameron A; Landrum MJ; Ermolaeva O; Sapojnikov V; Maglott DR; Buchanan AM; Ettensohn CA
    Dev Biol; 2006 Dec; 300(1):335-48. PubMed ID: 16987510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrascale and microscale growth dynamics of the cidaroid spine of Phyllacanthus imperialis revealed by ²⁶Mg labeling and NanoSIMS isotopic imaging.
    Gorzelak P; Stolarski J; Dery A; Dubois P; Escrig S; Meibom A
    J Morphol; 2014 Jul; 275(7):788-96. PubMed ID: 24595980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite material in the sea urchin
    Jessop AL; Millsteed AJ; Kirkensgaard JJK; Shaw J; Clode PL; Schröder-Turk GE
    J R Soc Interface; 2024 Mar; 21(212):20230597. PubMed ID: 38471532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ageing and degradation determines failure mode on sea urchin spines.
    Merino M; Vicente E; Gonzales KN; Torres FG
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1086-1092. PubMed ID: 28575943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ²⁶Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process.
    Gorzelak P; Stolarski J; Dubois P; Kopp C; Meibom A
    J Struct Biol; 2011 Oct; 176(1):119-26. PubMed ID: 21803159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws.
    Frank MB; Naleway SE; Wirth TS; Jung JY; Cheung CL; Loera FB; Medina S; Sato KN; Taylor JR; McKittrick J
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27166636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.