BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 32109615)

  • 1. Nanoscale ZnO-based photosensitizers for photodynamic therapy.
    Yi C; Yu Z; Ren Q; Liu X; Wang Y; Sun X; Yin S; Pan J; Huang X
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101694. PubMed ID: 32109615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy.
    Fatima H; Jin ZY; Shao Z; Chen XJ
    J Colloid Interface Sci; 2022 Sep; 621():440-463. PubMed ID: 35483177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer.
    Zhang H; Shan Y; Dong L
    J Biomed Nanotechnol; 2014 Aug; 10(8):1450-7. PubMed ID: 25016645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles.
    Sivakumar P; Lee M; Kim YS; Shim MS
    J Mater Chem B; 2018 Aug; 6(30):4852-4871. PubMed ID: 32255062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Fe
    Ren Q; Yi C; Pan J; Sun X; Huang X
    Int J Nanomedicine; 2022; 17():3385-3400. PubMed ID: 35937080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy.
    Sengar P; Garcia-Tapia K; Chauhan K; Jain A; Juarez-Moreno K; Borbón-Nuñez HA; Tiznado H; Contreras OE; Hirata GA
    J Colloid Interface Sci; 2019 Feb; 536():586-597. PubMed ID: 30390584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers.
    Wang S; Wang X; Yu L; Sun M
    Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania.
    Nadhman A; Nazir S; Khan MI; Arooj S; Bakhtiar M; Shahnaz G; Yasinzai M
    Free Radic Biol Med; 2014 Dec; 77():230-8. PubMed ID: 25266330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy.
    Lin X; Wu M; Li M; Cai Z; Sun H; Tan X; Li J; Zeng Y; Liu X; Liu J
    Acta Biomater; 2018 Aug; 76():178-192. PubMed ID: 30078423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible light driven mesoporous Ag-embedded ZnO nanocomposites: reactive oxygen species enhanced photocatalysis, bacterial inhibition and photodynamic therapy.
    Gupta J; Mohapatra J; Bahadur D
    Dalton Trans; 2017 Jan; 46(3):685-696. PubMed ID: 27896346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-responsive
    Namulinda T; Yan YJ; Wang LH; Qiu Y; Jin H; Kwetegyeka J; Gumula I; Atassi Y; Karam S; Chen ZL
    Nanomedicine (Lond); 2024 Jan; 19(2):127-143. PubMed ID: 38131290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodium Nanoparticles as a Novel Photosensitizing Agent in Photodynamic Therapy against Cancer.
    Machuca A; Garcia-Calvo E; Anunciação DS; Luque-Garcia JL
    Chemistry; 2020 Jun; 26(34):7685-7691. PubMed ID: 32294275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement.
    Pena Luengas SL; Marin GH; Aviles K; Cruz Acuña R; Roque G; Rodríguez Nieto F; Sanchez F; Tarditi A; Rivera L; Mansilla E
    Cancer Biother Radiopharm; 2014 Dec; 29(10):435-43. PubMed ID: 25490599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers.
    Liu J; Chen W; Zheng C; Hu F; Zhai J; Bai Q; Sun N; Qian G; Zhang Y; Dong K; Lu T
    Eur J Med Chem; 2022 Dec; 244():114843. PubMed ID: 36265281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy.
    Pham TC; Nguyen VN; Choi Y; Lee S; Yoon J
    Chem Rev; 2021 Nov; 121(21):13454-13619. PubMed ID: 34582186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy.
    Zhang Y; Wang B; Zhao R; Zhang Q; Kong X
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111099. PubMed ID: 32600703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type-I Photodynamic Therapy Induced by Pt-Coordination of Type-II Photosensitizers into Supramolecular Complexes.
    Fan X; Lv S; Lv F; Feng E; Liu D; Zhou P; Song F
    Chemistry; 2024 Mar; 30(17):e202304113. PubMed ID: 38182543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy.
    Li Y; Wang Y; Shang H; Wu J
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer.
    Shang L; Zhou X; Zhang J; Shi Y; Zhong L
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.