BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 32109615)

  • 21. Upconversion Nanoparticle-Induced Multimode Photodynamic Therapy Based on a Metal-Organic Framework/Titanium Dioxide Nanocomposite.
    Shi Z; Zhang K; Zada S; Zhang C; Meng X; Yang Z; Dong H
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12600-12608. PubMed ID: 32096623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation.
    Ismail AF; Ali MM; Ismail LF
    J Photochem Photobiol B; 2014 Sep; 138():99-108. PubMed ID: 24911277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activatable Type I Photosensitizer with Quenched Photosensitization Pre and Post Photodynamic Therapy.
    Tian J; Li B; Zhang F; Yao Z; Song W; Tang Y; Ping Y; Liu B
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202307288. PubMed ID: 37681940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trafficking of a Single Photosensitizing Molecule to Different Intracellular Organelles Demonstrates Effective Hydroxyl Radical-Mediated Photodynamic Therapy in the Endoplasmic Reticulum.
    Gilson RC; Tang R; Gautam KS; Grabowska D; Achilefu S
    Bioconjug Chem; 2019 May; 30(5):1451-1458. PubMed ID: 31009564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic chemo-photodynamic therapy mediated by light-activated ROS-degradable nanocarriers.
    Chen Y; Gao Y; Li Y; Wang K; Zhu J
    J Mater Chem B; 2019 Jan; 7(3):460-468. PubMed ID: 32254733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and Characterization of Polyvinylpyrrolidone-Modified ZnO Quantum Dots and Their In Vitro Photodynamic Tumor Suppressive Action.
    Song T; Qu Y; Ren Z; Yu S; Sun M; Yu X; Yu X
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activatable Photosensitizer for Smart Photodynamic Therapy Triggered by Reactive Oxygen Species in Tumor Cells.
    Yuan B; Wang H; Xu JF; Zhang X
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26982-26990. PubMed ID: 32432853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy.
    Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J
    Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of two porphyrine photosensitizers TMPyP and ZnTPPS
    Žárská L; Malá Z; Langová K; Malina L; Binder S; Bajgar R; Kolářová H
    Photodiagnosis Photodyn Ther; 2021 Jun; 34():102224. PubMed ID: 33609757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular coordination complexes (SCCs) with aggregation-induced emission for
    Jia H; Shi T; He T; Li Y; Yin S
    Dalton Trans; 2023 Apr; 52(14):4296-4302. PubMed ID: 36960620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nano-photosensitizers for enhanced photodynamic therapy.
    Lin L; Song X; Dong X; Li B
    Photodiagnosis Photodyn Ther; 2021 Dec; 36():102597. PubMed ID: 34699982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.
    Mokwena MG; Kruger CA; Ivan MT; Heidi A
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():147-154. PubMed ID: 29588217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-Organic Frameworks for Photodynamic Therapy: Emerging Synergistic Cancer Therapy.
    Song Y; Wang L; Xie Z
    Biotechnol J; 2021 Feb; 16(2):e1900382. PubMed ID: 32022449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application.
    Jia S; Yuan H; Hu R
    Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AIE material for photodynamic therapy.
    Saini V; Venkatesh V
    Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon-Enhanced Photodynamic Cancer Therapy by Upconversion Nanoparticles Conjugated with Au Nanorods.
    Chen CW; Chan YC; Hsiao M; Liu RS
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32108-32119. PubMed ID: 27933825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep-red Emitting Ir(III) Complexes as Type-I Photosensitizers for Lipid Droplets Targeted Photodynamic Therapy.
    Tong J; Liu A; Huang S; Yao Y; Shan GG; Su ZM
    Chem Asian J; 2023 Jun; 18(12):e202300175. PubMed ID: 37114295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Highly Efficient and Photostable Photosensitizer with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Anticancer Therapy.
    Wu W; Mao D; Hu F; Xu S; Chen C; Zhang CJ; Cheng X; Yuan Y; Ding D; Kong D; Liu B
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design.
    Liu Z; Zou H; Zhao Z; Zhang P; Shan GG; Kwok RTK; Lam JWY; Zheng L; Tang BZ
    ACS Nano; 2019 Oct; 13(10):11283-11293. PubMed ID: 31525947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antiproliferative effects of ZnO, ZnO-MTCP, and ZnO-CuMTCP nanoparticles with safe intensity UV and X-ray irradiation.
    Sadjadpour S; Safarian S; Zargar SJ; Sheibani N
    Biotechnol Appl Biochem; 2016; 63(1):113-24. PubMed ID: 25581219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.