BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32109675)

  • 1. Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage.
    Lou R; Tang P; Ding K; Li S; Tian C; Li Y; Zhao S; Zhang Y; Shui W
    iScience; 2020 Mar; 23(3):100903. PubMed ID: 32109675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation.
    Lou R; Liu W; Li R; Li S; He X; Shui W
    Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample Size-Comparable Spectral Library Enhances Data-Independent Acquisition-Based Proteome Coverage of Low-Input Cells.
    Siyal AA; Chen ES; Chan HJ; Kitata RB; Yang JC; Tu HL; Chen YJ
    Anal Chem; 2021 Dec; 93(51):17003-17011. PubMed ID: 34904835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MaxDIA enables library-based and library-free data-independent acquisition proteomics.
    Sinitcyn P; Hamzeiy H; Salinas Soto F; Itzhak D; McCarthy F; Wichmann C; Steger M; Ohmayer U; Distler U; Kaspar-Schoenefeld S; Prianichnikov N; Yılmaz Ş; Rudolph JD; Tenzer S; Perez-Riverol Y; Nagaraj N; Humphrey SJ; Cox J
    Nat Biotechnol; 2021 Dec; 39(12):1563-1573. PubMed ID: 34239088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive spectral assay library to quantify the Escherichia coli proteome by DIA/SWATH-MS.
    Midha MK; Kusebauch U; Shteynberg D; Kapil C; Bader SL; Reddy PJ; Campbell DS; Baliga NS; Moritz RL
    Sci Data; 2020 Nov; 7(1):389. PubMed ID: 33184295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry.
    Cho KC; Clark DJ; Schnaubelt M; Teo GC; Leprevost FDV; Bocik W; Boja ES; Hiltke T; Nesvizhskii AI; Zhang H
    Anal Chem; 2020 Mar; 92(6):4217-4225. PubMed ID: 32058701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of a Deep Mouse Brain Spectral Library for Transmembrane Proteome Profiling in Mental Disease Models.
    Li S; Luo H; Tang P; Tian C; Hu J; Lu H; Shui W
    Mol Cell Proteomics; 2024 Apr; 23(6):100777. PubMed ID: 38670310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Optimization of Spectral Library Size Improves DIA-MS Proteome Coverage and Applications to 15 Tumors.
    Ge W; Liang X; Zhang F; Hu Y; Xu L; Xiang N; Sun R; Liu W; Xue Z; Yi X; Sun Y; Wang B; Zhu J; Lu C; Zhan X; Chen L; Wu Y; Zheng Z; Gong W; Wu Q; Yu J; Ye Z; Teng X; Huang S; Zheng S; Liu T; Yuan C; Guo T
    J Proteome Res; 2021 Dec; 20(12):5392-5401. PubMed ID: 34748352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-Independent Acquisition Approach to Proteome: A Case Study and a Spectral Library for Mass Spectrometry-Based Investigation of
    Awasthi K; Kootimole CN; Aravind A; Prasad TSK
    OMICS; 2022 Mar; 26(3):142-150. PubMed ID: 35099291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MSLibrarian: Optimized Predicted Spectral Libraries for Data-Independent Acquisition Proteomics.
    Isaksson M; Karlsson C; Laurell T; Kirkeby A; Heusel M
    J Proteome Res; 2022 Feb; 21(2):535-546. PubMed ID: 35042333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New targeted approaches for the quantification of data-independent acquisition mass spectrometry.
    Bruderer R; Sondermann J; Tsou CC; Barrantes-Freer A; Stadelmann C; Nesvizhskii AI; Schmidt M; Reiter L; Gomez-Varela D
    Proteomics; 2017 May; 17(9):. PubMed ID: 28319648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DIA-MS2pep: a library-free framework for comprehensive peptide identification from data-independent acquisition data.
    Hou J; Wang J; Yang F; Xu T
    Biophys Rep; 2022 Dec; 8(5-6):253-268. PubMed ID: 37287874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome.
    Li KW; Gonzalez-Lozano MA; Koopmans F; Smit AB
    Front Mol Neurosci; 2020; 13():564446. PubMed ID: 33424549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-Independent Acquisition Coupled to Visible Laser-Induced Dissociation at 473 nm (DIA-LID) for Peptide-Centric Specific Analysis of Cysteine-Containing Peptide Subset.
    Garcia L; Girod M; Rompais M; Dugourd P; Carapito C; Lemoine J
    Anal Chem; 2018 Mar; 90(6):3928-3935. PubMed ID: 29465226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape.
    Kitata RB; Yang JC; Chen YJ
    Mass Spectrom Rev; 2023; 42(6):2324-2348. PubMed ID: 35645145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Urinary Proteome Library Generation Methods on Data-Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis.
    Zhao M; Liu X; Sun H; Guo Z; Liu X; Sun W
    Proteomics Clin Appl; 2019 Sep; 13(5):e1800152. PubMed ID: 31017348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data.
    Ting YS; Egertson JD; Bollinger JG; Searle BC; Payne SH; Noble WS; MacCoss MJ
    Nat Methods; 2017 Sep; 14(9):903-908. PubMed ID: 28783153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PASS-DIA: A Data-Independent Acquisition Approach for Discovery Studies.
    Mun DG; Renuse S; Saraswat M; Madugundu A; Udainiya S; Kim H; Park SR; Zhao H; Nirujogi RS; Na CH; Kannan N; Yates JR; Lee SW; Pandey A
    Anal Chem; 2020 Nov; 92(21):14466-14475. PubMed ID: 33079518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.