These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 32109845)
41. Cholesterol modulates the structure, binding modes, and energetics of caveolin-membrane interactions. Sengupta D J Phys Chem B; 2012 Dec; 116(50):14556-64. PubMed ID: 23199331 [TBL] [Abstract][Full Text] [Related]
42. Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet. Gómez-Ruiz A; de Miguel C; Campión J; Martínez JA; Milagro FI FEBS Lett; 2009 Oct; 583(19):3259-64. PubMed ID: 19751730 [TBL] [Abstract][Full Text] [Related]
43. Caveolin-1 is not essential for biosynthetic apical membrane transport. Manninen A; Verkade P; Le Lay S; Torkko J; Kasper M; Füllekrug J; Simons K Mol Cell Biol; 2005 Nov; 25(22):10087-96. PubMed ID: 16260622 [TBL] [Abstract][Full Text] [Related]
44. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Sowa G; Pypaert M; Sessa WC Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14072-7. PubMed ID: 11707586 [TBL] [Abstract][Full Text] [Related]
45. Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Santibanez JF; Blanco FJ; Garrido-Martin EM; Sanz-Rodriguez F; del Pozo MA; Bernabeu C Cardiovasc Res; 2008 Mar; 77(4):791-9. PubMed ID: 18065769 [TBL] [Abstract][Full Text] [Related]
46. A conserved sequence in caveolin-1 is both necessary and sufficient for caveolin polarity and cell directional migration. Sun XH; Liu ZY; Chen H; Beardsley AR; Qi Q; Liu J FEBS Lett; 2009 Nov; 583(22):3681-9. PubMed ID: 19854179 [TBL] [Abstract][Full Text] [Related]
47. The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. Breuza L; Corby S; Arsanto JP; Delgrossi MH; Scheiffele P; Le Bivic A J Cell Sci; 2002 Dec; 115(Pt 23):4457-67. PubMed ID: 12414992 [TBL] [Abstract][Full Text] [Related]
49. Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains. McEwen DP; Li Q; Jackson S; Jenkins PM; Martens JR Mol Pharmacol; 2008 Mar; 73(3):678-85. PubMed ID: 18045854 [TBL] [Abstract][Full Text] [Related]
50. Increase in caveolae and caveolin-1 expression modulates agonist-induced contraction and store- and receptor-operated Ca(2+) entry in pulmonary arteries of pulmonary hypertensive rats. Jiao HX; Mu YP; Gui LX; Yan FR; Lin DC; Sham JS; Lin MJ Vascul Pharmacol; 2016 Sep; 84():55-66. PubMed ID: 27311393 [TBL] [Abstract][Full Text] [Related]
51. Probing the structure and dynamics of caveolin-1 in a caveolae-mimicking asymmetric lipid bilayer model. Liu H; Yang L; Zhang Q; Mao L; Jiang H; Yang H Eur Biophys J; 2016 Sep; 45(6):511-21. PubMed ID: 27038819 [TBL] [Abstract][Full Text] [Related]
52. Cholesterol increases adhesion of monocytes to endothelium by moving adhesion molecules out of caveolae. Fu C; He J; Li C; Shyy JY; Zhu Y Biochim Biophys Acta; 2010 Jul; 1801(7):702-10. PubMed ID: 20382259 [TBL] [Abstract][Full Text] [Related]
53. Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A2-dependent EDHF formation. Graziani A; Bricko V; Carmignani M; Graier WF; Groschner K Cardiovasc Res; 2004 Nov; 64(2):234-42. PubMed ID: 15485682 [TBL] [Abstract][Full Text] [Related]
54. The biology of caveolae: achievements and perspectives. Parat MO Int Rev Cell Mol Biol; 2009; 273():117-62. PubMed ID: 19215904 [TBL] [Abstract][Full Text] [Related]
55. Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Yang Y; Ma Z; Hu W; Wang D; Jiang S; Fan C; Di S; Liu D; Sun Y; Yi W Basic Res Cardiol; 2016 Jul; 111(4):45. PubMed ID: 27282376 [TBL] [Abstract][Full Text] [Related]
57. Receptor activator of NF-κB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. Hada N; Okayasu M; Ito J; Nakayachi M; Hayashida C; Kaneda T; Uchida N; Muramatsu T; Koike C; Masuhara M; Sato T; Hakeda Y Bone; 2012 Jan; 50(1):226-36. PubMed ID: 22075210 [TBL] [Abstract][Full Text] [Related]
58. Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Ballard-Croft C; Locklar AC; Kristo G; Lasley RD Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H658-67. PubMed ID: 16565301 [TBL] [Abstract][Full Text] [Related]
59. Caveolin-1, caveolin-3 and VEGF expression in the masticatory muscles of mdx mice. Kunert-Keil C; Gredes T; Lucke S; Morgenstern S; Mielczarek A; Sporniak-Tutak K; Gedrange T; Spassov A Folia Histochem Cytobiol; 2011; 49(2):291-8. PubMed ID: 21744331 [TBL] [Abstract][Full Text] [Related]
60. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. Li S; Galbiati F; Volonte D; Sargiacomo M; Engelman JA; Das K; Scherer PE; Lisanti MP FEBS Lett; 1998 Aug; 434(1-2):127-34. PubMed ID: 9738464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]