These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32109894)

  • 1. A wireless optical handheld device for carotid waveform measurement and its validation in a clinical study.
    Rinderknecht D; De Balasy JM; Pahlevan NM
    Physiol Meas; 2020 Jun; 41(5):055008. PubMed ID: 32109894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proof-of-concept for a non-invasive, portable, and wireless device for cardiovascular monitoring in pediatric patients.
    Miller JC; Shepherd J; Rinderknecht D; Cheng AL; Pahlevan NM
    PLoS One; 2020; 15(1):e0227145. PubMed ID: 31899768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse wave analysis with two tonometric devices: a comparison study.
    Agnoletti D; Millasseau SC; Topouchian J; Zhang Y; Safar ME; Blacher J
    Physiol Meas; 2014 Sep; 35(9):1837-48. PubMed ID: 25154391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of central augmentation index by three different methods and techniques: Agreement among Arteriograph, Complior, and Mobil-O-Graph devices.
    Papaioannou TG; Thymis J; Benas D; Triantafyllidi H; Kostelli G; Pavlidis G; Kousathana F; Katogiannis K; Vlastos D; Lambadiari V; Papadavid E; Parissis J; Tousoulis D; Ikonomidis I
    J Clin Hypertens (Greenwich); 2019 Sep; 21(9):1386-1392. PubMed ID: 31465154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive validation of central and peripheral augmentation index estimated by a novel wrist-worn tonometer.
    García-Ortiz L; Recio-Rodríguez JI; Agudo-Conde C; Maderuelo-Fernandez JA; Patino-Alonso MC; de Cabo-Laso Á; Rodriguez-Martín C; Gonzalez-Sanchez J; Rodriguez-Sanchez E; Gómez-Marcos MA;
    J Hypertens; 2018 Nov; 36(11):2204-2214. PubMed ID: 29846328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pressure wave shape comparison between two non-invasive tonometric devices].
    Agnoletti D; Millasseau S; Topouchian J; Zhang Y; Safar ME; Blacher J
    Ann Cardiol Angeiol (Paris); 2013 Jun; 62(3):193-9. PubMed ID: 23721987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systolic time intervals assessed from analysis of the carotid pressure waveform.
    Salvi P; Grillo A; Tan I; Simon G; Salvi L; Gao L; Rovina M; Butlin M; Yang Y; Meneghin E; Meng L; Faini A; Barin E; Pini A; Carretta R; Huo Y; Avolio A; Parati G
    Physiol Meas; 2018 Aug; 39(8):084002. PubMed ID: 30033934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central arterial pulse waveform acquisition with a portable pen-like optical fiber sensor.
    Leitão C; Antunes P; André P; Pinto JL; Bastos JM
    Blood Press Monit; 2015 Feb; 20(1):43-6. PubMed ID: 25115621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening left ventricular systolic dysfunction in children using intrinsic frequencies of carotid pressure waveforms measured by a novel smartphone-based device.
    Cheng AL; Liu J; Bravo S; Miller JC; Pahlevan NM
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36753767
    [No Abstract]   [Full Text] [Related]  

  • 10. Carotid Arterial Pulse Waveform Measurements Using Fiber Bragg Grating Pulse Probe.
    Padma S; Umesh S; Srinivas T; Asokan S
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1415-1420. PubMed ID: 29990008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotid-femoral pulse wave velocity assessment using novel cuff-based techniques: comparison with tonometric measurement.
    Butlin M; Qasem A; Battista F; Bozec E; McEniery CM; Millet-Amaury E; Pucci G; Wilkinson IB; Schillaci G; Boutouyrie P; Avolio AP
    J Hypertens; 2013 Nov; 31(11):2237-43; discussion 2243. PubMed ID: 24077246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Vicorder device compared with SphygmoCor in the assessment of carotid-femoral pulse wave velocity in patients with peripheral arterial disease.
    Shahin Y; Barakat H; Barnes R; Chetter I
    Hypertens Res; 2013 Mar; 36(3):208-12. PubMed ID: 23034469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotid-femoral pulse wave velocity assessment by two different methods: implications for risk assessment.
    Pichler G; Martinez F; Vicente A; Solaz E; Calaforra O; Redon J
    J Hypertens; 2015 Sep; 33(9):1868-75; discussion 1875. PubMed ID: 26147385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of an optical fiber-based probe for the assessment of central arterial pulse waves.
    Leitão C; Ribau V; Afreixo V; Antunes P; André P; Pinto JL; Boutouyrie P; Laurent S; Bastos JM
    Hypertens Res; 2018 Nov; 41(11):904-912. PubMed ID: 30154504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducibility of pulse wave analysis and pulse wave velocity in patients with type 2 diabetes.
    Laugesen E; Rossen NB; Høyem P; Christiansen JS; Knudsen ST; Hansen KW; Hansen TK; Poulsen PL
    Scand J Clin Lab Invest; 2013 Aug; 73(5):428-35. PubMed ID: 23777282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-Term Repeatability of Noninvasive Aortic Pulse Wave Velocity Assessment: Comparison Between Methods and Devices.
    Grillo A; Parati G; Rovina M; Moretti F; Salvi L; Gao L; Baldi C; Sorropago G; Faini A; Millasseau SC; Scalise F; Carretta R; Salvi P
    Am J Hypertens; 2017 Dec; 31(1):80-88. PubMed ID: 29059329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the assessment of arterial compliance from carotid pressure waveform.
    Bikia V; Segers P; Rovas G; Pagoulatou S; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2021 Aug; 321(2):H424-H434. PubMed ID: 34213389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-specific pulse wave propagation modeling: Towards enhancement of cardiovascular assessment methods.
    Poleszczuk J; Debowska M; Dabrowski W; Wojcik-Zaluska A; Zaluska W; Waniewski J
    PLoS One; 2018; 13(1):e0190972. PubMed ID: 29324835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility studies of Bragg probe for noninvasive carotid pulse waveform assessment.
    Leitão C; Bilro L; Alberto N; Antunes P; Lima H; André PS; Nogueira R; Pinto JL
    J Biomed Opt; 2013 Jan; 18(1):17006. PubMed ID: 23296087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology.
    Pahlevan NM; Rinderknecht DG; Tavallali P; Razavi M; Tran TT; Fong MW; Kloner RA; Csete M; Gharib M
    Crit Care Med; 2017 Jul; 45(7):1115-1120. PubMed ID: 28441235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.