BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32109897)

  • 1. Design, modeling and 3D printing of a personalized cervix tissue implant with protein release function.
    Zhao C; Wang Z; Hua C; Ji J; Zhou Z; Fang Y; Weng D; Lu L; Pang Y; Sun W
    Biomed Mater; 2020 Jun; 15(4):045005. PubMed ID: 32109897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
    Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W
    Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
    Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW
    Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing Cervical Implant Scaffolds Incorporated with Drug-Loaded Carboxylated Chitosan Microspheres for Long-Term Anti-HPV Protein Delivery.
    Ji J; Zhao C; Hua C; Lu L; Pang Y; Sun W
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1544-1553. PubMed ID: 38369785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved osseointegration with rhBMP-2 intraoperatively loaded in a specifically designed 3D-printed porous Ti6Al4V vertebral implant.
    Zhang T; Wei Q; Fan D; Liu X; Li W; Song C; Tian Y; Cai H; Zheng Y; Liu Z
    Biomater Sci; 2020 Mar; 8(5):1279-1289. PubMed ID: 31867583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the need of a scale-dependent material characterization to describe the mechanical behavior of 3D printed Ti6Al4V custom prostheses using finite element models.
    Danielli F; Ciriello L; La Barbera L; Rodriguez Matas JF; Pennati G
    J Mech Behav Biomed Mater; 2023 Apr; 140():105707. PubMed ID: 36801786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production.
    Miller AT; Safranski DL; Wood C; Guldberg RE; Gall K
    J Mech Behav Biomed Mater; 2017 Nov; 75():1-13. PubMed ID: 28689135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and preparation of an electromechanical implant prototype for an on-demand drug delivery.
    Saadatkish M; Ghassami E; Foroozmehr E; Adib E; Varshosaz J
    J Mech Behav Biomed Mater; 2024 Mar; 151():106352. PubMed ID: 38218044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design Optimization and Manufacturing of Bio-fixed tibial implants using 3D printing technology.
    Guoqing Z; Junxin L; Chengguang Z; Juanjuan X; Xiaoyu Z; Anmin W
    J Mech Behav Biomed Mater; 2021 May; 117():104415. PubMed ID: 33652236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment.
    Izadifar M; Babyn P; Kelly ME; Chapman D; Chen X
    Tissue Eng Part C Methods; 2017 Sep; 23(9):548-564. PubMed ID: 28726575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review.
    Basgul C; Spece H; Sharma N; Thieringer FM; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1924-1941. PubMed ID: 33856114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed reservoir-type implants containing poly(lactic acid)/poly(caprolactone) porous membranes for sustained drug delivery.
    Korelidou A; Domínguez-Robles J; Magill ER; Eleftheriadou M; Cornelius VA; Donnelly RF; Margariti A; Larrañeta E
    Biomater Adv; 2022 Aug; 139():213024. PubMed ID: 35908473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D printing of biocompatible, hierarchically porous shape memory polymeric structures.
    Bond G; Mahjoubnia A; Zhao W; King SD; Chen SY; Lin J
    Biomater Adv; 2023 Oct; 153():213575. PubMed ID: 37557033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and functional comparison of moulded and 3D printed medical silicones.
    Zühlke A; Gasik M; Vrana NE; Muller CB; Barthes J; Bilotsky Y; Courtial E; Marquette C
    J Mech Behav Biomed Mater; 2021 Oct; 122():104649. PubMed ID: 34218017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on preparation of 3D printing degradable tissue engineering ossicles].
    Lu XX; Li XX; Zhao DH; Ji JY; Tong BS; Sun JJ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Aug; 55(8):764-768. PubMed ID: 32791775
    [No Abstract]   [Full Text] [Related]  

  • 18. Does implantation site influence bone ingrowth into 3D-printed porous implants?
    Walsh WR; Pelletier MH; Wang T; Lovric V; Morberg P; Mobbs RJ
    Spine J; 2019 Nov; 19(11):1885-1898. PubMed ID: 31255790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg.
    Meenashisundaram GK; Wang N; Maskomani S; Lu S; Anantharajan SK; Dheen ST; Nai SML; Fuh JYH; Wei J
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110478. PubMed ID: 31923949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterization and ex vivo evaluation of anticancer and antiviral drug printed bioadhesive film for the treatment of cervical cancer.
    Varan C; Şen M; Sandler N; Aktaş Y; Bilensoy E
    Eur J Pharm Sci; 2019 Mar; 130():114-123. PubMed ID: 30690187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.