These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32110293)
1. Electrochemical synthesis of Au@semiconductor core-shell nanocrystals guided by single particle plasmonic imaging. Wang H; Zhao W; Xu CH; Chen HY; Xu JJ Chem Sci; 2019 Oct; 10(40):9308-9314. PubMed ID: 32110293 [TBL] [Abstract][Full Text] [Related]
2. Real-Time Tracking the Electrochemical Synthesis of Au@Metal Core-Shell Nanoparticles toward Photo Enhanced Methanol Oxidation. Wang H; Zhao W; Zhao Y; Xu CH; Xu JJ; Chen HY Anal Chem; 2020 Oct; 92(20):14006-14011. PubMed ID: 32957774 [TBL] [Abstract][Full Text] [Related]
3. Transfer Charge and Energy of Ag@CdSe QDs-rGO Core-Shell Plasmonic Photocatalyst for Enhanced Visible Light Photocatalytic Activity. Zhou M; Li J; Ye Z; Ma C; Wang H; Huo P; Shi W; Yan Y ACS Appl Mater Interfaces; 2015 Dec; 7(51):28231-43. PubMed ID: 26669327 [TBL] [Abstract][Full Text] [Related]
4. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu Zou Y; Sun C; Gong W; Yang X; Huang X; Yang T; Lu W; Jiang J ACS Nano; 2017 Apr; 11(4):3776-3785. PubMed ID: 28394555 [TBL] [Abstract][Full Text] [Related]
5. Efficiently Enhancing Visible Light Photocatalytic Activity of Faceted TiO2 Nanocrystals by Synergistic Effects of Core-Shell Structured Au@CdS Nanoparticles and Their Selective Deposition. Tong R; Liu C; Xu Z; Kuang Q; Xie Z; Zheng L ACS Appl Mater Interfaces; 2016 Aug; 8(33):21326-33. PubMed ID: 27479634 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric synthesis of Au-CdSe core-semishell nanorods for plasmon-enhanced visible-light-driven hydrogen evolution. Wang PF; Chen K; Ma S; Wang W; Qiu YH; Ding SJ; Liang S; Wang QQ Nanoscale; 2020 Jan; 12(2):687-694. PubMed ID: 31829357 [TBL] [Abstract][Full Text] [Related]
7. Au@CdSe heteroepitaxial nanorods: An example of metal nanorods fully covered by a semiconductor shell with strong photo-induced interfacial charge transfer effects. Lim SC; Lo WF; Yang PY; Lu SC; Joplin A; Link S; Chang WS; Tuan HY J Colloid Interface Sci; 2018 Dec; 532():143-152. PubMed ID: 30077828 [TBL] [Abstract][Full Text] [Related]
8. Enriching Silver Nanocrystals with a Second Noble Metal. Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS-AgAuS Yolk-Shell Nanocrystals and Their Visible Light Photocatalytic Applications. Feng J; Liu J; Cheng X; Liu J; Xu M; Zhang J Adv Sci (Weinh); 2018 Jan; 5(1):1700376. PubMed ID: 29375968 [TBL] [Abstract][Full Text] [Related]
10. Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth. AbouZeid KM; Mohamed MB; El-Shall MS Small; 2011 Dec; 7(23):3299-307. PubMed ID: 21994186 [TBL] [Abstract][Full Text] [Related]
11. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness. Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM Front Chem; 2018; 6():567. PubMed ID: 30515380 [TBL] [Abstract][Full Text] [Related]
12. Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures. Dana J; Maity P; Ghosh HN Nanoscale; 2017 Jul; 9(27):9723-9731. PubMed ID: 28675235 [TBL] [Abstract][Full Text] [Related]
14. Elucidating Facet-Dependent Photocatalytic Activities of Metastable CdS and Au@CdS Core-Shell Nanocrystals. Ge F; Zhao Y; Feng C; Li X; Wang J; Liu H; Hu L; Chen Y; Chen F; Cheng F; Wei HY; Wu XJ ACS Appl Mater Interfaces; 2024 Jun; 16(25):32847-32856. PubMed ID: 38862405 [TBL] [Abstract][Full Text] [Related]
15. An unconventional outer-to-inner synthesis strategy for core (Au)-shell nanostructures with photo-electrochemical enhancement. Zhang Z; Baek M; Song H; Yong K Nanoscale; 2017 Apr; 9(16):5342-5351. PubMed ID: 28401236 [TBL] [Abstract][Full Text] [Related]
16. Dark-field microscopic real-time monitoring the growth of Au on Cu Zhao Y; Zhao W; Chen HY; Xu JJ Anal Chim Acta; 2021 Jun; 1162():338503. PubMed ID: 33926697 [TBL] [Abstract][Full Text] [Related]
17. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light. Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100 [TBL] [Abstract][Full Text] [Related]
18. Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au Hu C; Chen W; Xie Y; Verma SK; Destro P; Zhan G; Chen X; Zhao X; Schuck PJ; Kriegel I; Manna L Nanoscale; 2018 Feb; 10(6):2781-2789. PubMed ID: 29359781 [TBL] [Abstract][Full Text] [Related]
19. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals. Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744 [TBL] [Abstract][Full Text] [Related]
20. A versatile strategy for controlled assembly of plasmonic metal/semiconductor hemispherical nano-heterostructure arrays. Jia M; Zhang Y; Li Z; Crouch E; Doble S; Avenoso J; Yan H; Ni C; Gundlach L Nanoscale; 2020 Sep; 12(33):17530-17537. PubMed ID: 32812597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]