These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32110309)

  • 1. Single-molecule dynamic DNA junctions for engineering robust molecular switches.
    Cai S; Deng Y; Fu S; Li J; Yu C; Su X
    Chem Sci; 2019 Nov; 10(43):9922-9927. PubMed ID: 32110309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAM-Engineered Toehold Switches as Input-Responsive Activators of CRISPR-Cas12a for Sensing Applications.
    Bagheri N; Chamorro A; Idili A; Porchetta A
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202319677. PubMed ID: 38284432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascade signal amplification strategy for the electrochemical aptasensing of nucleic acid: Combination of dual-output toehold-mediated DNA strand displacement, DNA walker and Exo III.
    Liu J; Guo J; Li G; Zou L
    Anal Chim Acta; 2024 Apr; 1297():342370. PubMed ID: 38438228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latent Toehold-Mediated DNA Circuits Based on a Bulge-Loop Structure for Leakage Reduction and Its Application to Signal-Amplifying DNA Logic Gates.
    Sugawara T; Oishi M
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):15907-15915. PubMed ID: 38508218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a robust DNA split proximity circuit with minimized circuit leakage.
    Ang YS; Tong R; Yung LY
    Nucleic Acids Res; 2016 Aug; 44(14):e121. PubMed ID: 27207880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement.
    Hao Y; Li J; Li Q; Zhang L; Shi J; Zhang X; Aldalbahi A; Wang L; Fan C; Wang F
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20612-20618. PubMed ID: 32744433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.
    Ekdahl AM; Rojano-Nisimura AM; Contreras LM
    J Mol Biol; 2022 Sep; 434(18):167689. PubMed ID: 35717997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic applications of nucleic acid circuits.
    Jung C; Ellington AD
    Acc Chem Res; 2014 Jun; 47(6):1825-35. PubMed ID: 24828239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering high-robustness DNA molecular circuits by utilizing nucleases.
    Fu S; Li N; Li J; Deng Y; Xu L; Yu C; Su X
    Nanoscale; 2020 Apr; 12(13):6964-6970. PubMed ID: 32195488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of the Kinetics of Toehold-Mediated Strand Displacement via Plasmon Rulers.
    Li MX; Xu CH; Zhang N; Qian GS; Zhao W; Xu JJ; Chen HY
    ACS Nano; 2018 Apr; 12(4):3341-3350. PubMed ID: 29578338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation.
    Simmel FC
    RNA Biol; 2023 Jan; 20(1):154-163. PubMed ID: 37095744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-Free Dynamic DNA Reaction Networks for On-Demand Bioanalysis and Bioimaging.
    He S; Shang J; He Y; Wang F
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38271669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design Approaches to Expand the Toolkit for Building Cotranscriptionally Encoded RNA Strand Displacement Circuits.
    Schaffter SW; Wintenberg ME; Murphy TM; Strychalski EA
    ACS Synth Biol; 2023 May; 12(5):1546-1561. PubMed ID: 37134273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Arm Junctions for Dynamic DNA Nanotechnology.
    Kotani S; Hughes WL
    J Am Chem Soc; 2017 May; 139(18):6363-6368. PubMed ID: 28436649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal Amplification for Cell-Free Biosensors, an Analog-to-Digital Converter.
    Franco RAL; Brenner G; Zocca VFB; de Paiva GB; Lima RN; Rech EL; Amaral DT; Lins MRCR; Pedrolli DB
    ACS Synth Biol; 2023 Oct; 12(10):2819-2826. PubMed ID: 37792474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel DNA detection using spherical identification probe and strand displacement reaction-initiated silver nanocluster switch.
    Yang X; Liu X; Kang Q; Qi Y; Du Y; Xiang H
    Anal Sci; 2023 Mar; 39(3):275-284. PubMed ID: 36607557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small-molecule chemical interface for molecular programs.
    Shenshin VA; Lescanne C; Gines G; Rondelez Y
    Nucleic Acids Res; 2021 Jul; 49(13):7765-7774. PubMed ID: 34223901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stacking nonenzymatic circuits for high signal gain.
    Chen X; Briggs N; McLain JR; Ellington AD
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5386-91. PubMed ID: 23509255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An allosteric DNA switch-mediated catalytic DNA circuit for ratiometric and sensitive nucleic acid detection.
    Zhang X; Xie S; Chen X; Wang L; Li F; Liu S
    Anal Methods; 2022 Dec; 15(1):124-131. PubMed ID: 36504112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.