BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32110353)

  • 1. Understanding the multiscale self-assembly of metal-organic polyhedra towards functionally graded porous gels.
    Legrand A; Craig GA; Bonneau M; Minami S; Urayama K; Furukawa S
    Chem Sci; 2019 Dec; 10(47):10833-10842. PubMed ID: 32110353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore-Networked Soft Materials Based on Metal-Organic Polyhedra.
    Wang Z; Furukawa S
    Acc Chem Res; 2024 Feb; 57(3):327-337. PubMed ID: 38205789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of metal-organic polyhedra into supramolecular polymers with intrinsic microporosity.
    Carné-Sánchez A; Craig GA; Larpent P; Hirose T; Higuchi M; Kitagawa S; Matsuda K; Urayama K; Furukawa S
    Nat Commun; 2018 Jul; 9(1):2506. PubMed ID: 30002378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Colloidal Hydrogels Formed by Coordination-Driven Self-Assembly of Charged Metal-Organic Polyhedra.
    Wang Z; Craig GA; Legrand A; Haase F; Minami S; Urayama K; Furukawa S
    Chem Asian J; 2021 May; 16(9):1092-1100. PubMed ID: 33660942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale structural control of linked metal-organic polyhedra gel by aging-induced linkage-reorganization.
    Wang Z; Villa Santos C; Legrand A; Haase F; Hara Y; Kanamori K; Aoyama T; Urayama K; Doherty CM; Smales GJ; Pauw BR; Colón YJ; Furukawa S
    Chem Sci; 2021 Oct; 12(38):12556-12563. PubMed ID: 34703541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous supramolecular gels produced by reversible self-gelation of ruthenium-based metal-organic polyhedra.
    Troyano J; Tayier F; Phattharaphuti P; Aoyama T; Urayama K; Furukawa S
    Chem Sci; 2023 Sep; 14(35):9543-9552. PubMed ID: 37712036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Control of Supramolecular Polymerization and Gelation of Metal-Organic Polyhedra.
    Legrand A; Liu LH; Royla P; Aoyama T; Craig GA; Carné-Sánchez A; Urayama K; Weigand JJ; Lin CH; Furukawa S
    J Am Chem Soc; 2021 Mar; 143(9):3562-3570. PubMed ID: 33646776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Extrinsic Porosities in Linked Metal-Organic Polyhedra Gels by Imparting Coordination-Driven Self-Assembly with Electrostatic Repulsion.
    Wang Z; Aoyama T; Sánchez-González E; Inose T; Urayama K; Furukawa S
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35544704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular Design of Porous Soft Materials via Self-Organization of Metal-Organic Cages.
    Hosono N; Kitagawa S
    Acc Chem Res; 2018 Oct; 51(10):2437-2446. PubMed ID: 30252435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Coordinative Solubilizer Method to Fabricate Soft Porous Materials from Insoluble Metal-Organic Polyhedra.
    Carné-Sánchez A; Craig GA; Larpent P; Guillerm V; Urayama K; Maspoch D; Furukawa S
    Angew Chem Int Ed Engl; 2019 May; 58(19):6347-6350. PubMed ID: 30848051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Polyhedra as Building Blocks for Porous Extended Networks.
    Khobotov-Bakishev A; Hernández-López L; von Baeckmann C; Albalad J; Carné-Sánchez A; Maspoch D
    Adv Sci (Weinh); 2022 Apr; 9(11):e2104753. PubMed ID: 35119223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilizing Metal-Organic Polyhedra (MOP): Issues and Strategies.
    Mollick S; Fajal S; Mukherjee S; Ghosh SK
    Chem Asian J; 2019 Sep; 14(18):3096-3108. PubMed ID: 31361390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-Networked Gels: Permanently Porous Ionic Liquid Gels with Linked Metal-Organic Polyhedra Networks.
    Wang Z; Ozcan A; Craig GA; Haase F; Aoyama T; Poloneeva D; Horio K; Higuchi M; Yao MS; Doherty CM; Maurin G; Urayama K; Bavykina A; Horike S; Gascon J; Semino R; Furukawa S
    J Am Chem Soc; 2023 Jul; 145(26):14456-14465. PubMed ID: 37350764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOP × MOF: Collaborative Combination of Metal-Organic Polyhedra and Metal-Organic Framework for Proton Conductivity.
    Lee J; Lim DW; Dekura S; Kitagawa H; Choe W
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12639-12646. PubMed ID: 30839184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Polycarboxylate Rhodium(II) Metal-Organic Polyhedra (MOPs) and their use as Building Blocks for Highly Connected Metal-Organic Frameworks (MOFs).
    Grancha T; Carné-Sánchez A; Zarekarizi F; Hernández-López L; Albalad J; Khobotov A; Guillerm V; Morsali A; Juanhuix J; Gándara F; Imaz I; Maspoch D
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5729-5733. PubMed ID: 33306243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal-Organic Polyhedra.
    Mollick S; Mukherjee S; Kim D; Qiao Z; Desai AV; Saha R; More YD; Jiang J; Lah MS; Ghosh SK
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1041-1045. PubMed ID: 30511777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-linking Zr-based metal-organic polyhedra
    Nam D; Huh J; Lee J; Kwak JH; Jeong HY; Choi K; Choe W
    Chem Sci; 2017 Nov; 8(11):7765-7771. PubMed ID: 29163913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microporous Organically Pillared Layered Silicates (MOPS): A Versatile Class of Functional Porous Materials.
    Rieß M; Senker J; Schobert R; Breu J
    Chemistry; 2019 Feb; 25(9):2103-2111. PubMed ID: 30178902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permanently Microporous Metal-Organic Polyhedra.
    Gosselin AJ; Rowland CA; Bloch ED
    Chem Rev; 2020 Aug; 120(16):8987-9014. PubMed ID: 32519860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent Porous Polymers Based on Aggregation-Induced Mechanism: Design, Synthesis and Functions.
    Dalapati S; Gu C; Jiang D
    Small; 2016 Dec; 12(47):6513-6527. PubMed ID: 27740717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.