BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3211075)

  • 1. Biochemical composition and dynamics of the axonal cytoskeleton in the corticospinal system of the adult hamster.
    Oblinger MM
    Metab Brain Dis; 1988 Mar; 3(1):49-65. PubMed ID: 3211075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotypic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons.
    Oblinger MM; Brady ST; McQuarrie IG; Lasek RJ
    J Neurosci; 1987 Feb; 7(2):453-62. PubMed ID: 2434629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat.
    McQuarrie IG; Brady ST; Lasek RJ
    J Neurosci; 1986 Jun; 6(6):1593-605. PubMed ID: 2423662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticospinal neurons exhibit a novel pattern of cytoskeletal gene expression after injury.
    Mikucki SA; Oblinger MM
    J Neurosci Res; 1991 Sep; 30(1):213-25. PubMed ID: 1724469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord.
    Kuang RZ; Kalil K
    J Comp Neurol; 1990 Dec; 302(3):461-72. PubMed ID: 1702111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axons of the pyramidal tract do not increase their transport of growth-associated proteins after axotomy.
    Reh TA; Redshaw JD; Bisby MA
    Brain Res; 1987 Apr; 388(1):1-6. PubMed ID: 2437998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal transport of actin: slow component b is the principal source of actin for the axon.
    Black MM; Lasek RJ
    Brain Res; 1979 Aug; 171(3):401-13. PubMed ID: 89886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation and aging of the axonal cytoskeleton: biochemical analysis of transported tubulin.
    Tashiro T; Komiya Y
    J Neurosci Res; 1991 Sep; 30(1):192-200. PubMed ID: 1724468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal transport of type III intermediate filament protein peripherin in intact and regenerating motor axons of the rat sciatic nerve.
    Chadan S; Le Gall JY; Di Giamberardino L; Filliatreau G
    J Neurosci Res; 1994 Oct; 39(2):127-39. PubMed ID: 7530776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush.
    McQuarrie IG; Jacob JM
    J Comp Neurol; 1991 Mar; 305(1):139-47. PubMed ID: 1709646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow components of axonal transport: two cytoskeletal networks.
    Black MM; Lasek RJ
    J Cell Biol; 1980 Aug; 86(2):616-23. PubMed ID: 6156946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal transport of cytoskeletal proteins in oculomotor axons and their residence times in the axon terminals.
    Paggi P; Lasek RJ
    J Neurosci; 1987 Aug; 7(8):2397-411. PubMed ID: 2441008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clathrin is axonally transported as part of slow component b: the microfilament complex.
    Garner JA; Lasek RJ
    J Cell Biol; 1981 Jan; 88(1):172-8. PubMed ID: 6162851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential axonal transport of isotubulins in the motor axons of the rat sciatic nerve.
    Denoulet P; Filliatreau G; de Néchaud B; Gros F; Di Giamberardino L
    J Cell Biol; 1989 Mar; 108(3):965-71. PubMed ID: 2921287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons.
    Nixon RA; Brown BA; Marotta CA
    J Cell Biol; 1982 Jul; 94(1):150-8. PubMed ID: 6181078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased slow transport in axons of regenerating newt limbs after a nerve conditioning lesion.
    Maier CE; McQuarrie IG
    Dev Biol; 1990 Jul; 140(1):172-81. PubMed ID: 2358117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ; Paggi P; Katz MJ
    J Cell Biol; 1992 May; 117(3):607-16. PubMed ID: 1374068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging.
    McQuarrie IG; Brady ST; Lasek RJ
    Neurobiol Aging; 1989; 10(4):359-65. PubMed ID: 2478905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The amount of slow axonal transport is proportional to the radial dimensions of the axon.
    Wujek JR; Lasek RJ; Gambetti P
    J Neurocytol; 1986 Feb; 15(1):75-83. PubMed ID: 2423651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.