BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32111861)

  • 21. A Guide for Selection of Aging Time and Temperature for Wettability Alteration in Various Rock-Oil Systems.
    Al-Ameer MA; Azad MS; Al-Shehri D; Mahmoud M; Kamal MS; Patil S
    ACS Omega; 2023 Aug; 8(34):30790-30801. PubMed ID: 37663473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into the interactions between asphaltene and a low surface energy anionic surfactant under low and high brine salinity.
    Kiani S; Jones DR; Alexander S; Barron AR
    J Colloid Interface Sci; 2020 Jul; 571():307-317. PubMed ID: 32208201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of salinity and composition of injected low salinity water into sandstone reservoirs with minimum scale deposition.
    Bijani M; Khamehchi E; Shabani M
    Sci Rep; 2023 Aug; 13(1):12991. PubMed ID: 37563175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Influence of Oil Composition, Rock Mineralogy, Aging Time, and Brine Pre-soak on Shale Wettability.
    Saputra IWR; Adebisi O; Ladan EB; Bagareddy A; Sarmah A; Schechter DS
    ACS Omega; 2022 Jan; 7(1):85-100. PubMed ID: 35036681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of crude oil properties impact on wettability alteration during low salinity water flooding using an improved geochemical model.
    Ghorbani M; Rashidi F; Mousavi-Dehghani A
    Sci Rep; 2022 Apr; 12(1):6600. PubMed ID: 35459870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems.
    Mohammed M; Babadagli T
    Adv Colloid Interface Sci; 2015 Jun; 220():54-77. PubMed ID: 25798909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Straightforward Assessment of Wettability Changes by Washburn Capillary Rise: Toward a Screening Tool for Selecting Water Compositions for Improved Oil Recovery.
    Molinier V; Pauliet L; Klimenko A; Passade-Boupat N; Bourrel M
    ACS Omega; 2024 Feb; 9(6):6932-6944. PubMed ID: 38371840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore scale investigation of low salinity surfactant nanofluid injection into oil saturated sandstone via X-ray micro-tomography.
    Jha NK; Lebedev M; Iglauer S; Ali M; Roshan H; Barifcani A; Sangwai JS; Sarmadivaleh M
    J Colloid Interface Sci; 2020 Mar; 562():370-380. PubMed ID: 31864014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the Type and Concentration of Salt on Production Efficiency in Smart Water Injection into Carbonate Oil Reservoir Rocks.
    Li H; Razavirad F; Shahrabadi A; Binley A
    ACS Omega; 2023 Aug; 8(33):30736-30746. PubMed ID: 37636969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.
    Sarafzadeh P; Hezave AZ; Ravanbakhsh M; Niazi A; Ayatollahi S
    Colloids Surf B Biointerfaces; 2013 May; 105():223-9. PubMed ID: 23376749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental Investigation on the Pore-Scale Mechanism of Improved Sweep Efficiency by Low-Salinity Water Flooding Using a Reservoir-on-a-Chip.
    Li S; Liu Y; Xue L; Yang L; Yuan Z
    ACS Omega; 2021 Aug; 6(32):20984-20991. PubMed ID: 34423206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Study on the Mechanism and Law of Low-Salinity Water Flooding for Enhanced Oil Recovery in Tight Sandstone Reservoirs.
    Fan P; Liu Y; He Y; Hu Y; Chao L; Wang Y; Liu L; Li J
    ACS Omega; 2024 Mar; 9(11):12665-12675. PubMed ID: 38524499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method.
    Akai T; Blunt MJ; Bijeljic B
    J Colloid Interface Sci; 2020 Apr; 566():444-453. PubMed ID: 32028206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental Core Flooding Investigation of New ZnO-γAl
    Jafarbeigi E; Ahmadi Y; Mansouri M; Ayatollahi S
    ACS Omega; 2022 Nov; 7(43):39107-39121. PubMed ID: 36340127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of low salinity surfactant nanofluids with carbonate surfaces and molecular level dynamics at fluid-fluid interface at ScCO
    Jha NK; Ivanova A; Lebedev M; Barifcani A; Cheremisin A; Iglauer S; Sangwai JS; Sarmadivaleh M
    J Colloid Interface Sci; 2021 Mar; 586():315-325. PubMed ID: 33148450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A positively charged calcite surface model for molecular dynamics studies of wettability alteration.
    Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2020 Jun; 569():128-139. PubMed ID: 32105900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding.
    Jackson MD; Al-Mahrouqi D; Vinogradov J
    Sci Rep; 2016 Nov; 6():37363. PubMed ID: 27876833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship Between Zeta Potential and Wettability in Porous Media: Insights From a Simple Bundle of Capillary Tubes Model.
    Collini H; Jackson MD
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):605-621. PubMed ID: 34628321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AFM study of mineral wettability with reservoir oils.
    Kumar K; Dao E; Mohanty KK
    J Colloid Interface Sci; 2005 Sep; 289(1):206-17. PubMed ID: 16009229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wettability alteration of oil-wet carbonate by silica nanofluid.
    Al-Anssari S; Barifcani A; Wang S; Maxim L; Iglauer S
    J Colloid Interface Sci; 2016 Jan; 461():435-442. PubMed ID: 26414426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.