BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32111933)

  • 1. High-Performance Conducting Polymer Nanotube-based Liquid-Ion Gated Field-Effect Transistor Aptasensor for Dopamine Exocytosis.
    Park SJ; Lee J; Seo SE; Kim KH; Park CS; Lee SH; Ban HS; Lee BD; Song HS; Kim J; Lee CS; Bae J; Kwon OS
    Sci Rep; 2020 Feb; 10(1):3772. PubMed ID: 32111933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor.
    Kwon OS; Park SJ; Jang J
    Biomaterials; 2010 Jun; 31(17):4740-7. PubMed ID: 20227108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection.
    Kwon OS; Hong TJ; Kim SK; Jeong JH; Hahn JS; Jang J
    Biosens Bioelectron; 2010 Feb; 25(6):1307-12. PubMed ID: 19914055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors.
    Park SJ; Song HS; Kwon OS; Chung JH; Lee SH; An JH; Ahn SR; Lee JE; Yoon H; Park TH; Jang J
    Sci Rep; 2014 Mar; 4():4342. PubMed ID: 24614248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film.
    Mansouri Majd S; Salimi A
    Anal Chim Acta; 2018 Feb; 1000():273-282. PubMed ID: 29289320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection.
    Yoon H; Ko S; Jang J
    J Phys Chem B; 2008 Aug; 112(32):9992-7. PubMed ID: 18646791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation.
    Li BR; Hsieh YJ; Chen YX; Chung YT; Pan CY; Chen YT
    J Am Chem Soc; 2013 Oct; 135(43):16034-7. PubMed ID: 24125072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer.
    Kwon OS; Park SJ; Hong JY; Han AR; Lee JS; Lee JS; Oh JH; Jang J
    ACS Nano; 2012 Feb; 6(2):1486-93. PubMed ID: 22224587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real time protein recognition in a liquid-gated carbon nanotube field-effect transistor modified with aptamers.
    Pacios M; Martin-Fernandez I; Borrisé X; del Valle M; Bartrolí J; Lora-Tamayo E; Godignon P; Pérez-Murano F; Esplandiu MJ
    Nanoscale; 2012 Sep; 4(19):5917-23. PubMed ID: 22899008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Study of Field-Effect Transistors Based on Graphene Oxide and CVD Graphene in Highly Sensitive NT-proBNP Aptasensors.
    Kudriavtseva A; Jarić S; Nekrasov N; Orlov AV; Gadjanski I; Bobrinetskiy I; Nikitin PI; Knežević N
    Biosensors (Basel); 2024 Apr; 14(5):. PubMed ID: 38785689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental comparison of direct and indirect aptamer-based biochemical functionalization of electrolyte-gated graphene field-effect transistors for biosensing applications.
    Jahromi AK; Shieh H; Low K; Tasnim N; Najjaran H; Hoorfar M
    Anal Chim Acta; 2022 Aug; 1222():340177. PubMed ID: 35934424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free liquid crystal-based biosensor for detection of dopamine using DNA aptamer as a recognition probe.
    Nguyen DK; Jang CH
    Anal Biochem; 2020 Sep; 605():113807. PubMed ID: 32526198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive FET-type aptasensor using flower-like MoS
    An JH; Jang J
    Nanoscale; 2017 Jun; 9(22):7483-7492. PubMed ID: 28530303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free aptasensor based on polyethyleneimine wrapped carbon nanotubes in situ formed gold nanoparticles as signal probe for highly sensitive detection of dopamine.
    Azadbakht A; Roushani M; Abbasi AR; Menati S; Derikvand Z
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():585-593. PubMed ID: 27524058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor.
    Huang J; Luo X; Lee I; Hu Y; Cui XT; Yun M
    Biosens Bioelectron; 2011 Dec; 30(1):306-9. PubMed ID: 21937215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor.
    Park JW; Park SJ; Kwon OS; Lee C; Jang J
    Anal Chem; 2014 Feb; 86(3):1822-8. PubMed ID: 24410346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general configurational strategy to quencher-free aptasensors.
    Mei M; Mu L; Liang S; Wang Y; She G; Shi W
    Biosens Bioelectron; 2021 Apr; 178():113025. PubMed ID: 33529860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic aptamer-based sensors.
    Willner I; Zayats M
    Angew Chem Int Ed Engl; 2007; 46(34):6408-18. PubMed ID: 17600802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-based aptasensors for the rapid and ultrasensitive detection of bacteria.
    Zelada-Guillén GA; Blondeau P; Rius FX; Riu J
    Methods; 2013 Oct; 63(3):233-8. PubMed ID: 23872060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duplexed aptamers: history, design, theory, and application to biosensing.
    Munzar JD; Ng A; Juncker D
    Chem Soc Rev; 2019 Mar; 48(5):1390-1419. PubMed ID: 30707214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.