These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32112286)

  • 1. Enhancing reaction-based de novo design using a multi-label reaction class recommender.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    J Comput Aided Mol Des; 2020 Jul; 34(7):783-803. PubMed ID: 32112286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetically accessible de novo design using reaction vectors: Application to PARP1 inhibitors.
    Ghiandoni GM; Flanagan SR; Bodkin MJ; Nizi MG; Galera-Prat A; Brai A; Chen B; Wallace JEA; Hristozov D; Webster J; Manfroni G; Lehtiö L; Tabarrini O; Gillet VJ
    Mol Inform; 2024 Apr; 43(4):e202300183. PubMed ID: 38258328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistep Reaction Based De Novo Drug Design: Generating Synthetically Feasible Design Ideas.
    Masek BB; Baker DS; Dorfman RJ; DuBrucq K; Francis VC; Nagy S; Richey BL; Soltanshahi F
    J Chem Inf Model; 2016 Apr; 56(4):605-20. PubMed ID: 27031173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RENATE: A Pseudo-retrosynthetic Tool for Synthetically Accessible de novo Design.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    Mol Inform; 2022 Apr; 41(4):e2100207. PubMed ID: 34750989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.
    Podlewska S; Czarnecki WM; Kafel R; Bojarski AJ
    J Chem Inf Model; 2017 Feb; 57(2):133-147. PubMed ID: 28158942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-objective Genetic Algorithm for De Novo Drug Design (MoGADdrug).
    Devi RV; Sathya SS; Coumar MS
    Curr Comput Aided Drug Des; 2021; 17(3):445-457. PubMed ID: 32562528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-generation de novo design: a view from a medicinal chemist perspective.
    Zaliani A; Boda K; Seidel T; Herwig A; Schwab CH; Gasteiger J; Claussen H; Lemmen C; Degen J; Pärn J; Rarey M
    J Comput Aided Mol Des; 2009 Aug; 23(8):593-602. PubMed ID: 19562260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided design of small molecules for chemical genomics.
    Dean PM
    Methods Mol Biol; 2005; 310():25-39. PubMed ID: 16350945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editorial: in silico drug design and medicinal chemistry).
    Singla RK
    Curr Top Med Chem; 2015; 15(11):971-2. PubMed ID: 25860175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy between combinatorial chemistry and de novo design.
    Leach AR; Bryce RA; Robinson AJ
    J Mol Graph Model; 2000; 18(4-5):358-67, 526. PubMed ID: 11143555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scoring of de novo Designed Chemical Entities by Macromolecular Target Prediction.
    Button AL; Hiss JA; Schneider P; Schneider G
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27643811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modern computational chemistry and drug discovery: structure generating programs.
    Bohacek RS; McMartin C
    Curr Opin Chem Biol; 1997 Aug; 1(2):157-61. PubMed ID: 9667851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A collection of robust organic synthesis reactions for in silico molecule design.
    Hartenfeller M; Eberle M; Meier P; Nieto-Oberhuber C; Altmann KH; Schneider G; Jacoby E; Renner S
    J Chem Inf Model; 2011 Dec; 51(12):3093-8. PubMed ID: 22077721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated De Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn?
    Grebner C; Matter H; Plowright AT; Hessler G
    J Med Chem; 2020 Aug; 63(16):8809-8823. PubMed ID: 32134646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical genomics: a challenge for de novo drug design.
    Dean PM
    Mol Biotechnol; 2007 Nov; 37(3):237-45. PubMed ID: 17952670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quest for novel chemical matter and the contribution of computer-aided de novo design.
    Pirard B
    Expert Opin Drug Discov; 2011 Mar; 6(3):225-31. PubMed ID: 22647201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knowledge-based approach to de novo design using reaction vectors.
    Patel H; Bodkin MJ; Chen B; Gillet VJ
    J Chem Inf Model; 2009 May; 49(5):1163-84. PubMed ID: 19382767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
    Schneider G; Lee ML; Stahl M; Schneider P
    J Comput Aided Mol Des; 2000 Jul; 14(5):487-94. PubMed ID: 10896320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.