These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32112286)

  • 21. QSAR-assisted-MMPA to expand chemical transformation space for lead optimization.
    Fu L; Yang ZY; Yang ZJ; Yin MZ; Lu AP; Chen X; Liu S; Hou TJ; Cao DS
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforced Adversarial Neural Computer for de Novo Molecular Design.
    Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A
    J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ring system-based chemical graph generation for de novo molecular design.
    Miyao T; Kaneko H; Funatsu K
    J Comput Aided Mol Des; 2016 May; 30(5):425-46. PubMed ID: 27299746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FOG: Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space.
    Kutchukian PS; Lou D; Shakhnovich EI
    J Chem Inf Model; 2009 Jul; 49(7):1630-42. PubMed ID: 19527020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning in Chemoinformatics and Medicinal Chemistry.
    Rodríguez-Pérez R; Miljković F; Bajorath J
    Annu Rev Biomed Data Sci; 2022 Aug; 5():43-65. PubMed ID: 35440144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo drug design using multiobjective evolutionary graphs.
    Nicolaou CA; Apostolakis J; Pattichis CS
    J Chem Inf Model; 2009 Feb; 49(2):295-307. PubMed ID: 19434831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo drug design.
    Hartenfeller M; Schneider G
    Methods Mol Biol; 2011; 672():299-323. PubMed ID: 20838974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent developments in de novo design and scaffold hopping.
    Mauser H; Guba W
    Curr Opin Drug Discov Devel; 2008 May; 11(3):365-74. PubMed ID: 18428090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Medical recommender systems based on continuous-valued logic and multi-criteria decision operators, using interpretable neural networks.
    Ochoa JGD; Csiszár O; Schimper T
    BMC Med Inform Decis Mak; 2021 Jun; 21(1):186. PubMed ID: 34112161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of synthetic accessibility based on commercially available compound databases.
    Fukunishi Y; Kurosawa T; Mikami Y; Nakamura H
    J Chem Inf Model; 2014 Dec; 54(12):3259-67. PubMed ID: 25420000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in multiparameter optimization methods for de novo drug design.
    Segall M
    Expert Opin Drug Discov; 2014 Jul; 9(7):803-17. PubMed ID: 24793080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis.
    Struble TJ; Alvarez JC; Brown SP; Chytil M; Cisar J; DesJarlais RL; Engkvist O; Frank SA; Greve DR; Griffin DJ; Hou X; Johannes JW; Kreatsoulas C; Lahue B; Mathea M; Mogk G; Nicolaou CA; Palmer AD; Price DJ; Robinson RI; Salentin S; Xing L; Jaakkola T; Green WH; Barzilay R; Coley CW; Jensen KF
    J Med Chem; 2020 Aug; 63(16):8667-8682. PubMed ID: 32243158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mining electronic laboratory notebooks: analysis, retrosynthesis, and reaction based enumeration.
    Christ CD; Zentgraf M; Kriegl JM
    J Chem Inf Model; 2012 Jul; 52(7):1745-56. PubMed ID: 22657734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substructural Connectivity Fingerprint and Extreme Entropy Machines-A New Method of Compound Representation and Analysis.
    Rataj K; Czarnecki W; Podlewska S; Pocha A; Bojarski AJ
    Molecules; 2018 May; 23(6):. PubMed ID: 29789513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LEADD: Lamarckian evolutionary algorithm for de novo drug design.
    Kerstjens A; De Winter H
    J Cheminform; 2022 Jan; 14(1):3. PubMed ID: 35033209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing active template molecules by combining computational de novo design and human chemist's expertise.
    Lameijer EW; Tromp RA; Spanjersberg RF; Brussee J; Ijzerman AP
    J Med Chem; 2007 Apr; 50(8):1925-32. PubMed ID: 17367122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast de novo docking combining pharmacophores and combinatorics.
    Gastreich M; Lilienthal M; Briem H; Claussen H
    J Comput Aided Mol Des; 2006 Dec; 20(12):717-34. PubMed ID: 17265098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing synthetic accessibility of chemical compounds using machine learning methods.
    Podolyan Y; Walters MA; Karypis G
    J Chem Inf Model; 2010 Jun; 50(6):979-91. PubMed ID: 20536191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversifying chemical libraries with generative topographic mapping.
    Lin A; Beck B; Horvath D; Marcou G; Varnek A
    J Comput Aided Mol Des; 2020 Jul; 34(7):805-815. PubMed ID: 31407224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.