These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32112377)

  • 1. Lipophilic Near-Infrared Dyes for In Vivo Fluorescent Cell Tracking.
    Basel MT
    Methods Mol Biol; 2020; 2126():33-43. PubMed ID: 32112377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson's disease.
    Bossolasco P; Cova L; Levandis G; Diana V; Cerri S; Lambertenghi Deliliers G; Polli E; Silani V; Blandini F; Armentero MT
    Int J Nanomedicine; 2012; 7():435-47. PubMed ID: 22334776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling.
    Youniss FM; Sundaresan G; Graham LJ; Wang L; Berry CR; Dewkar GK; Jose P; Bear HD; Zweit J
    PLoS One; 2014; 9(10):e109162. PubMed ID: 25334026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near infrared in vivo flow cytometry for tracking fluorescent circulating cells.
    Suo Y; Liu T; Xie C; Wei D; Tan X; Wu L; Wang X; He H; Shi G; Wei X; Shi C
    Cytometry A; 2015 Sep; 87(9):878-84. PubMed ID: 26138257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upconversion Fluorescent Nanoprobe for Highly Sensitive In Vivo Cell Tracking.
    Shen S; Wang C
    Methods Mol Biol; 2020; 2126():85-93. PubMed ID: 32112381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Tracking the Transplanted Stem Cells Using Near-Infrared Fluorescent Nanoprobes: Turning from the First to the Second Near-Infrared Window.
    Chen G; Zhang Y; Li C; Huang D; Wang Q; Wang Q
    Adv Healthc Mater; 2018 Oct; 7(20):e1800497. PubMed ID: 30019509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel near-infrared fluorescence imaging probe for in vivo neutrophil tracking.
    Xiao L; Zhang Y; Berr SS; Chordia MD; Pramoonjago P; Pu L; Pan D
    Mol Imaging; 2012; 11(5):372-82. PubMed ID: 22954181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo Near-infrared Fluorescence Tumor Imaging Using DiR-loaded Nanocarriers.
    Liu H; Wu D
    Curr Drug Deliv; 2016; 13(1):40-8. PubMed ID: 26138681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation.
    Kim JS; Kim YH; Kim JH; Kang KW; Tae EL; Youn H; Kim D; Kim SK; Kwon JT; Cho MH; Lee YS; Jeong JM; Chung JK; Lee DS
    Nanomedicine (Lond); 2012 Feb; 7(2):219-29. PubMed ID: 22175235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer mediated large Stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging.
    He X; Wang Y; Wang K; Chen M; Chen S
    Anal Chem; 2012 Nov; 84(21):9056-64. PubMed ID: 23017033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD44-specific supramolecular hydrogels for fluorescence molecular imaging of stem-like gastric cancer cells.
    Park J; Ku M; Kim E; Park Y; Hong Y; Haam S; Cheong JH; Park ES; Suh JS; Huh YM; Yang J
    Integr Biol (Camb); 2013 Apr; 5(4):669-72. PubMed ID: 23403616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Ratiometric and near-Infrared Fluorescent Probe for Imaging Cu
    Guo R; Wang Q; Lin W
    J Fluoresc; 2017 Sep; 27(5):1655-1660. PubMed ID: 28424935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation.
    Markus MA; Napp J; Behnke T; Mitkovski M; Monecke S; Dullin C; Kilfeather S; Dressel R; Resch-Genger U; Alves F
    ACS Nano; 2015 Dec; 9(12):11642-57. PubMed ID: 26513457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unique off-on near-infrared QCy7-derived probe for selective detection and imaging of hydrogen sulfide in cells and in vivo.
    Su D; Cheng D; Lv Y; Ren X; Wu Q; Yuan L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117635. PubMed ID: 31605973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Modality Noninvasive Mapping of Sentinel Lymph Node by Photoacoustic and Near-Infrared Fluorescent Imaging Using Dye-Loaded Mesoporous Silica Nanoparticles.
    Liu Z; Rong P; Yu L; Zhang X; Yang C; Guo F; Zhao Y; Zhou K; Wang W; Zeng W
    Mol Pharm; 2015 Sep; 12(9):3119-28. PubMed ID: 26132789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siloxane Nanoprobes for Labeling and Dual Modality Functional Imaging of Neural Stem Cells.
    Addington CP; Cusick A; Shankar RV; Agarwal S; Stabenfeldt SE; Kodibagkar VD
    Ann Biomed Eng; 2016 Mar; 44(3):816-27. PubMed ID: 26597417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared fluorescence imaging of mammalian cells and xenograft tumors with SNAP-tag.
    Gong H; Kovar JL; Baker B; Zhang A; Cheung L; Draney DR; Corrêa IR; Xu MQ; Olive DM
    PLoS One; 2012; 7(3):e34003. PubMed ID: 22479502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging system for explants analysis-A new approach for assessment of cell transplantation effects in large animal models.
    Zarychta-Wiśniewska W; Burdzinska A; Zagozdzon R; Dybowski B; Butrym M; Gajewski Z; Paczek L
    PLoS One; 2017; 12(9):e0184588. PubMed ID: 28931067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a dual-wavelength fluorescent nanoprobe for in vivo and in vitro cell tracking consecutively.
    Vu H; Zhou J; Huang Y; Hakamivala A; Khang MK; Tang L
    Bioorg Med Chem; 2019 May; 27(9):1855-1862. PubMed ID: 30910476
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.