These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32112542)
1. In silico and in vivo investigations using an endocavitary photoplethysmography sensor for tissue viability monitoring. Chatterjee S; Patel Z; Thaha MA; Kyriacou PA J Biomed Opt; 2020 Feb; 25(2):1-16. PubMed ID: 32112542 [TBL] [Abstract][Full Text] [Related]
2. The effects of optical sensor-tissue separation in endocavitary photoplethysmography. Patel Z; Thaha MA; Kyriacou PA Physiol Meas; 2018 Jul; 39(7):075001. PubMed ID: 29894308 [TBL] [Abstract][Full Text] [Related]
3. In vivo investigation of ear canal pulse oximetry during hypothermia. Budidha K; Kyriacou PA J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679 [TBL] [Abstract][Full Text] [Related]
4. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion. Abay TY; Kyriacou PA IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515 [TBL] [Abstract][Full Text] [Related]
5. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model. Chatterjee S; Budidha K; Kyriacou PA Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642 [TBL] [Abstract][Full Text] [Related]
6. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions. Abay TY; Kyriacou PA J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography. Chatterjee S; Kyriacou PA Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957 [TBL] [Abstract][Full Text] [Related]
8. In vivo performance of a visible wavelength optical sensor for monitoring intestinal perfusion and oxygenation. Robinson MB; Wisniowiecki AM; Butcher RJ; Wilson MA; Nance Ericson M; Cote GL J Biomed Opt; 2018 May; 23(5):1-12. PubMed ID: 29777581 [TBL] [Abstract][Full Text] [Related]
9. Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography. Han S; Roh D; Park J; Shin H Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835543 [TBL] [Abstract][Full Text] [Related]
10. Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor. Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA J Clin Monit Comput; 2011 Aug; 25(4):245-55. PubMed ID: 21953382 [TBL] [Abstract][Full Text] [Related]
11. Development of an intraluminal intestinal photoplethysmography sensor. Patel Z; Thaha MA; Kyriacou PA Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1840-1843. PubMed ID: 29060248 [TBL] [Abstract][Full Text] [Related]
12. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor. Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164 [TBL] [Abstract][Full Text] [Related]
13. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion. Chatterjee S; Abay TY; Phillips JP; Kyriacou PA J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648 [TBL] [Abstract][Full Text] [Related]
14. A Portable, Wireless Photoplethysomography Sensor for Assessing Health of Arteriovenous Fistula Using Class-Weighted Support Vector Machine. Chao PC; Chiang PY; Kao YH; Tu TY; Yang CY; Tarng DC; Wey CL Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423988 [TBL] [Abstract][Full Text] [Related]
15. A Novel Photoplethysmography Sensor for Vital Signs Monitoring from the Human Trachea. May JM; Phillips JP; Fitchat T; Ramaswamy S; Snidvongs S; Kyriacou PA Biosensors (Basel); 2019 Oct; 9(4):. PubMed ID: 31581652 [TBL] [Abstract][Full Text] [Related]
16. Photoplethysmogram measurement without direct skin-to-sensor contact using an adaptive light source intensity control. Baek HJ; Chung GS; Kim KK; Kim JS; Park KS IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1085-8. PubMed ID: 19775979 [TBL] [Abstract][Full Text] [Related]
17. Intraoperative monitoring of intestinal viability: Evaluation of a new combined sensor. McGuinness-Abdollahi Z; Thaha MA; Ramsanahie A; Ahmed S; Kyriacou PA; Phillips JP Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5126-9. PubMed ID: 26737445 [TBL] [Abstract][Full Text] [Related]
18. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles. Teichmann D; De Matteis D; Bartelt T; Walter M; Leonhardt S IEEE J Biomed Health Inform; 2015 May; 19(3):784-93. PubMed ID: 25826812 [TBL] [Abstract][Full Text] [Related]
19. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition. Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415 [TBL] [Abstract][Full Text] [Related]
20. Noninvasive In Vivo Estimation of Blood-Glucose Concentration by Monte Carlo Simulation. Haque CA; Hossain S; Kwon TH; Kim KD Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]