BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32112542)

  • 1. In silico and in vivo investigations using an endocavitary photoplethysmography sensor for tissue viability monitoring.
    Chatterjee S; Patel Z; Thaha MA; Kyriacou PA
    J Biomed Opt; 2020 Feb; 25(2):1-16. PubMed ID: 32112542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of optical sensor-tissue separation in endocavitary photoplethysmography.
    Patel Z; Thaha MA; Kyriacou PA
    Physiol Meas; 2018 Jul; 39(7):075001. PubMed ID: 29894308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model.
    Chatterjee S; Budidha K; Kyriacou PA
    Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo performance of a visible wavelength optical sensor for monitoring intestinal perfusion and oxygenation.
    Robinson MB; Wisniowiecki AM; Butcher RJ; Wilson MA; Nance Ericson M; Cote GL
    J Biomed Opt; 2018 May; 23(5):1-12. PubMed ID: 29777581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography.
    Han S; Roh D; Park J; Shin H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Clin Monit Comput; 2011 Aug; 25(4):245-55. PubMed ID: 21953382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an intraluminal intestinal photoplethysmography sensor.
    Patel Z; Thaha MA; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1840-1843. PubMed ID: 29060248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S; Abay TY; Phillips JP; Kyriacou PA
    J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Portable, Wireless Photoplethysomography Sensor for Assessing Health of Arteriovenous Fistula Using Class-Weighted Support Vector Machine.
    Chao PC; Chiang PY; Kao YH; Tu TY; Yang CY; Tarng DC; Wey CL
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Photoplethysmography Sensor for Vital Signs Monitoring from the Human Trachea.
    May JM; Phillips JP; Fitchat T; Ramaswamy S; Snidvongs S; Kyriacou PA
    Biosensors (Basel); 2019 Oct; 9(4):. PubMed ID: 31581652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoplethysmogram measurement without direct skin-to-sensor contact using an adaptive light source intensity control.
    Baek HJ; Chung GS; Kim KK; Kim JS; Park KS
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1085-8. PubMed ID: 19775979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative monitoring of intestinal viability: Evaluation of a new combined sensor.
    McGuinness-Abdollahi Z; Thaha MA; Ramsanahie A; Ahmed S; Kyriacou PA; Phillips JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5126-9. PubMed ID: 26737445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.
    Teichmann D; De Matteis D; Bartelt T; Walter M; Leonhardt S
    IEEE J Biomed Health Inform; 2015 May; 19(3):784-93. PubMed ID: 25826812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition.
    Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive In Vivo Estimation of Blood-Glucose Concentration by Monte Carlo Simulation.
    Haque CA; Hossain S; Kwon TH; Kim KD
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.