These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 32113194)
1. Pantoea sp. P37 as a novel nonpathogenic host for the heterologous production of rhamnolipids. Nawrath MM; Ottenheim C; Wu JC; Zimmermann W Microbiologyopen; 2020 May; 9(5):e1019. PubMed ID: 32113194 [TBL] [Abstract][Full Text] [Related]
2. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Grosso-Becerra MV; González-Valdez A; Granados-Martínez MJ; Morales E; Servín-González L; Méndez JL; Delgado G; Morales-Espinosa R; Ponce-Soto GY; Cocotl-Yañez M; Soberón-Chávez G Appl Microbiol Biotechnol; 2016 Dec; 100(23):9995-10004. PubMed ID: 27566690 [TBL] [Abstract][Full Text] [Related]
3. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798 [TBL] [Abstract][Full Text] [Related]
4. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Wittgens A; Santiago-Schuebel B; Henkel M; Tiso T; Blank LM; Hausmann R; Hofmann D; Wilhelm S; Jaeger KE; Rosenau F Appl Microbiol Biotechnol; 2018 Feb; 102(3):1229-1239. PubMed ID: 29264775 [TBL] [Abstract][Full Text] [Related]
5. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661 [TBL] [Abstract][Full Text] [Related]
6. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509 [TBL] [Abstract][Full Text] [Related]
7. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
8. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
9. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli. Du J; Zhang A; Hao J; Wang J Biotechnol Lett; 2017 Jul; 39(7):1041-1048. PubMed ID: 28374071 [TBL] [Abstract][Full Text] [Related]
11. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576 [TBL] [Abstract][Full Text] [Related]
12. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513 [TBL] [Abstract][Full Text] [Related]
13. Rhamnose lipids--biosynthesis, microbial production and application potential. Lang S; Wullbrandt D Appl Microbiol Biotechnol; 1999 Jan; 51(1):22-32. PubMed ID: 10077819 [TBL] [Abstract][Full Text] [Related]
14. Production of rhamnolipid biosurfactants. Ochsner UA; Hembach T; Fiechter A Adv Biochem Eng Biotechnol; 1996; 53():89-118. PubMed ID: 8578973 [TBL] [Abstract][Full Text] [Related]
15. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Zhao F; Yuan M; Lei L; Li C; Xu X Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600 [TBL] [Abstract][Full Text] [Related]
16. Detection and Quantification of Mono-Rhamnolipids and Di-Rhamnolipids Produced by Pseudomonas aeruginosa. González-Valdez A; Hernández-Pineda J; Soberón-Chávez G J Vis Exp; 2024 Mar; (205):. PubMed ID: 38619254 [TBL] [Abstract][Full Text] [Related]
18. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Cabrera-Valladares N; Richardson AP; Olvera C; Treviño LG; Déziel E; Lépine F; Soberón-Chávez G Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602 [TBL] [Abstract][Full Text] [Related]
19. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738 [TBL] [Abstract][Full Text] [Related]
20. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant Wang X; Li D; Yue S; Yuan Z; Li S Molecules; 2024 Apr; 29(9):. PubMed ID: 38731483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]